ORGANIC
LETTERS
2009
Vol. 11, No. 22
5342-5345
Symmetric Macrocycles by a Prins
Dimerization and Macrocyclization
Strategy
Michael R. Gesinski, Kwanruthai Tadpetch, and Scott D. Rychnovsky*
Department of Chemistry, 1102 Natural Sciences II, UniVersity of California,
IrVine, California 92697-2025
srychnoV@uci.edu
Received September 23, 2009
ABSTRACT
A tandem dimerization/macrocyclization reaction utilizing the Prins cyclization has been developed. This reaction develops molecular complexity
through the formation of highly substituted dimeric tetrahydropyran macrocycles. Mild conditions utilizing rhenium(VII) catalysts were explored
for aromatic substrates, while harsher Lewis acidic conditions were used for aliphatic substrates. Both aldehydes and acetals are shown to
be viable substrates for this reaction.
Oxacyclic macrodimers are an important class of natural
products offering a wide array of structural complexity and
bioactivity.1 These macrolides have become popular targets for
synthetic chemists.2 The most direct way to construct these
molecules is through the union of two monomeric species in a
tandem dimerization and macrocyclization reaction. The most
common version of this strategy utilizes two esterification
reactions between an activated acid and an alcohol, first an initial
dimerization followed by a macrolactonization.3 While often
successful, this approach does not greatly enhance the complex-
ity of the intermediate through the formation of carbon-carbon
bonds. Alternative bond-forming reactions, such as Suzuki
coupling and olefin metathesis, have been used with occasional
success in dimerization and macrocyclization strategies.4,5
Herein we describe a new dimerization and macrocyclization
strategy based on the Prins cyclization reaction.
The Prins cyclization is a powerful reaction that forms
cis-2,6-disubstituted tetrahydropyrans (THPs) through the
addition of an olefin to an oxocarbenium ion generated from
the condensation of an aldehyde with a homoallylic alcohol.6
Recently, intramolecular Prins cyclizations have been utilized
as key macrocyclization steps in the synthesis of several THP
containing natural products (Figure 1A).7 We report the
(4) (a) Cheung, L. L.; Marumoto, S.; Anderson, C. D.; Rychnovsky,
S. D. Org. Lett. 2008, 10, 3101–3104. (b) Nicolaou, K. C.; Nold, A. L.;
Milburn, R. R.; Schindler, C. S. Angew. Chem., Int. Ed. 2006, 45, 6527–
6532.
(5) (a) HWE olefinations: Hoye, T. R.; Humpal, P. E.; Moon, B. J. Am.
Chem. Soc. 2000, 122, 4982–4983. (b) Olefin metathesis: Smith, A. B., III;
Adams, C. M.; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 2001, 123,
5925–5937. (c) Condensations: Hoye, T. R.; Ye, Z.; Yao, L. J.; North, J. T.
J. Am. Chem. Soc. 1996, 118, 12074–12081.
(6) (a) Recent reviews on the Prins cyclization: Pastor, I. M.; Yus, M.
Curr. Org. Chem. 2007, 11, 925–957. (b) Snider, B. B. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.;
Pergamon Press: New York, 1991; Vol. 2, pp 527-561. (c) Adams, D. R.;
Bhatnagar, S. P. Synthesis 1977, 661–672. (d) Overman, L. E.; Pennington,
L. D. J. Org. Chem. 2003, 68, 7143–7157.
(1) Norcross, R. D.; Paterson, I. Chem. ReV. 1995, 95, 2041–2114.
(2) Kang, E. J.; Lee, E. Chem. ReV. 2005, 105, 4348–4378.
(3) (a) Wakamatsu, T.; Yamada, S.; Ban, Y. Heterocycles 1986, 24,
309–312. (b) Furstner, A.; Mlynarski, J.; Albert, M. J. Am. Chem. Soc.
2002, 124, 10274–10275. (c) Panek, J. S.; Porco, J. A., Jr.; Lobkovsky, E.;
Beeler, A. B.; Su, Q. Org. Lett. 2003, 5, 2149–2152. (d) Barth, R.; Mulzer,
J. Angew. Chem., Int. Ed. 2007, 46, 5791–5794.
(7) (a) Custar, D. W.; Zabawa, T. P.; Scheidt, K. A. J. Am. Chem. Soc.
2008, 130, 804–805. (b) Woo, S. K.; Kwon, M. S.; Lee, E. Angew. Chem.,
Int. Ed. 2008, 3242–3244. (c) Wender, P. A.; DeChristopher, B. A.; Schrier,
A. J. J. Am. Chem. Soc. 2008, 130, 6658–6659. (d) Bahnck, K. B.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2008, 130, 13177–13181.
10.1021/ol9022062 CCC: $40.75
Published on Web 10/29/2009
2009 American Chemical Society