C O M M U N I C A T I O N S
Figure 3, which clearly competes with the dye cation regeneration
process, which has been shown to occur on the ns to µs time scale.
The fs-TA spectra as well as the IPCE/APCE measurements
independently confirm that both porphyrin chromophores contribute
to charge injection.
In conclusion, we have successfully synthesized porphyrin
dimers, where both porphyrin component chromophores show
efficient electron injection into TiO2. DFT calculations suggest that
the two component porphyrins of each dimer do not significantly
interact in their ground state. By incorporating the porphyrin dimers
into DSSCs, we have achieved up to 70% APCE. Surprisingly, no
major difference in dye uptake, injection efficiency, or device
performance has been observed between the linear or angled dimer,
suggesting both of these building blocks could, in principle, be used
to construct larger 3-D multichromophore light harvesting arrays
with efficient solar energy conversion.
Figure 5. Light harvesting (LHE), incident photon-to-current conversion
(IPCE), and absorbed photon-to-current conversion (APCE) efficiency of
P10 (red) and P199 (black)-sensitized TiO2 solar cells.
Acknowledgment. Financial support from the Australian Re-
search Council, DEST and the MacDiarmid Institute for Advanced
Materials and Nanotechnology is gratefully acknowledged.
monoporphyrin dyes. This suggests that the closely packed, bulky
porphyrin dimers have a surface blocking effect, preventing the
approach of the electron-accepting species of the electrolyte to the
TiO2 interface.
Supporting Information Available: Synthesis of compounds,
UV-visible spectroscopy, cyclic voltammetry, DFT calculations and
geometry optimization, dye solar cell fabrication, APCE calculations.
This material is available free of charge via the Internet at http://
pubs.acs.org.
We have observed that the performance of the dimer-sensitized
DSSC is highly dependent on the dye uptake conditions. Optimiza-
tion of the fabrication parameters on a 3 µm thick TiO2 film have
yielded an improved 3.8% P10 DSSC (P10* in Table 1; N719 and
P199 was 3.4% and 3.1%, respectively). These results on thinner
TiO2 films (2.5 µm) clearly demonstrate the advantage of multi-
chromophore light harvesting arrays, where doubling the dye
absorption coefficient results in significantly improved light harvest-
ing efficiency (LHE), although this will not affect the maximum
achieveable efficiency of a fully optimized thick film DSSC, whose
efficiency is dominated by the spectral coverage rather than
absorption coefficient. It will, however, be beneficial for solid state
and quasi-solid state DSSCs or other dye-sensitized photoelectro-
chemical devices in which the total internal surface area for dye
uptake is limited.
The LHE (defined as the fraction of absorbed photons to incident
photons on the sample) of the best dimer-sensitized TiO2 film (P10*)
is ∼20% higher than that of the P199 monomer due to the similar
dye uptake (Table 1) and the much higher molar extinction
coefficient (Figure 5) demonstrating the clear advantage of the
concept used in these thin devices. The incident photon-to-current
conversion efficiency (IPCE) of the dimer, which includes contribu-
tion from light harvesting, electron injection, and charge collection,
is ∼10% larger than that of P199 in the Q-band spectral region. It
is above 50%, which can only be achieved if both porphyrin units
contribute to charge injection. The absorbed photon-to-current
conversion (APCE) efficiency (calculated as IPCE/LHE; see SI)
in the absence of charge collection losses (note that thin TiO2 films
were used) is determined by the charge injection efficiency. The
APCE values are ∼70 - 80% for both P10 and P199, consistent
with the TA measurements. The <100% APCE may be attributed
to the observed fast component of the recombination kinetics in
References
(1) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Chem. ReV.
2001, 101, 2751.
(2) Hasobe, T.; Kashiwagi, Y.; Absalom, M. A.; Sly, J.; Hosomizu, K.;
Crossley, M. J.; Imahori, H.; Kamat, P. V.; Fukuzumi, S. AdV Mater. 2004,
16, 975. Splan, K. E.; Massari, A. M.; Hupp, J. T. J. Phys. Chem. B 2004,
108, 4111. Imahori, H. J. Phys. Chem. B 2004, 108, 6130–6143. Hasobe,
T.; Kamat, P. V.; Absalom, M. A.; Kashiwagi, Y.; Sly, J.; Crossley, M. J.;
Hosomizu, K.; Imahori, H.; Fukuzumi, S. J. Phys. Chem. B 2004, 108,
12865. Gervaldo, M.; Otero, L.; Milanesio, M. E.; Durantini, E. N.; Silber,
J. J.; Sereno, L. E. Chem. Phys. 2005, 312, 97. Hasobe, T.; Murata, H.;
Fukuzumi, S.; Kamat, P. V. Mol. Cryst. Liq. Cryst. 2007, 471, 39. Dy,
J. T.; Tamaki, K.; Sanehira, Y.; Nakazaki, J.; Uchida, S.; Kubo, T.; Segawa,
H. Electrochemistry 2009, 77, 206.
(3) Hasselman, G. M.; Watson, D. F.; Stromberg, J. R.; Bocian, D. F.; Holten,
D.; Lindsey, J. S.; Meyer, G. J. J. Phys. Chem. B 2006, 110, 25430.
(4) O‘Regan, B.; Gra¨tzel, M. Nature 1991, 353, 737. Gra¨tzel, M. Nature 2001,
414, 338A.
(5) Gra¨tzel, M. J. Photochem. Photobiol., A 2004, 164, 3.
(6) Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. Nano Lett.
2007, 8, 2183.
(7) Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A.
Nano Lett. 2006, 2, 215.
(8) Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J. E.; Humphry-Baker,
R.; Zakeeruddin, S. M.; Gra¨tzel, M. J. Am. Chem. Soc. 2006, 128, 4146.
(9) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weisso¨rtel, F.; Salbeck, J.;
Spreitzer, H.; Gra¨tzel, M. Nature 1998, 395, 583.
(10) Koehorst, R. B. M.; Boschloo, G. K.; Savenije, T. J.; Goossens, A.;
Schaafsma, T. J. J. Phys. Chem. B 2000, 104 (10), 2371.
(11) Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord.
Chem. ReV. 2004, 248, 1363–1379.
(12) Furube, A.; Katoh, R.; Hara, K.; Sato, T.; Murata, S.; Arakawa, H.; Tachiya,
M. J. Phys. Chem. B 2005, 109, 16406. Wang, Z.-S.; Koumura, N.; Cui,
Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara,
K. Chem. Mater. 2008, 20, 3993.
(13) Chang, C.-W.; Luo, L.; Chou, C.-K.; Lo, C.-F.; Lin, C.-Y.; Hung, C.-S.;
Lee, Y.-P.; Diau, E. W.-G. J. Phys. Chem. C 2009, 113, 11524–11531.
(14) Mozer, A. J.; Wagner, P.; Officer, D. L.; Wallace, G. G.; Campbell, W. M.;
Miyashita, M.; Sunahara, K.; Mori, S. Chem. Commun. 2008, 4741.
JA9057713
9
J. AM. CHEM. SOC. VOL. 131, NO. 43, 2009 15623