Journal of the American Chemical Society
ARTICLE
PMP-esters 5a and 5b, chemoselective reductions of either of the
geminal functionalities can be efficiently performed (Schemes 1
and 2). The PMP-ester is cleanly reduced to the primary alcohols
6 and 10 using NaBH4 at 0 °C with retention of the stereo-
chemical information. In the case of R-nitroester 5a, selective
reduction of the nitro group is achieved using In/HCl, and the
resulting R-aminoester is shown to be a suitable precursor of the
are grateful to Francine Bꢀelanger-Gariꢀepy and CYLView for
X-ray analysis.
’ REFERENCES
(1) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977–1050. (b) Davies, H. M. L.; Antoulinakis, E. G. Org.
React. (N.Y.) 2001, 57, 1. (c) Brackmann, F.; de Meijere, A. Chem. Rev.
2007, 107, 4493–4537. (d) Gnad, F.; Reiser, O. Chem. Rev. 2003,
103, 1603–1623. (e) Wessjohann, L. A.; Brandt, W.; Thiemann, T.
Chem. Rev. 2003, 103, 1625–1647. (f) Pellissier, H. Tetrahedron 2008,
64, 7041–7095. (g) Reichelt, A.; Martin, S. F. Acc. Chem. Res. 2006,
39, 433–442. (h) Beaulieu, P. L.; Gillard, J.; Bailey, M. D.; Boucher, C.;
Duceppe, J. S.; Simoneau, B.; Wang, X.-J.; Zhang, L.; Grozinger, K.;
Houpis, I.; Farina, V.; Heimroth, H.; Krueger, T.; Schnaubelt, J. J. Org.
Chem. 2005, 70, 5869–5879.
(2) For selected reviews on the use of electrophilic cyclopropanes in
organic synthesis, see: (a) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.;
Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317–6325.
(b) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051–3060.
(c) Danishefsky, S. Acc. Chem. Res. 1979, 12, 66–72.
(3) For recent examples of nucleophilic addition on enantioenriched
electrophilic cyclopropanes and its application in natural product
synthesis, see: (a) Marcoux, D.; Goudreau, S. R.; Charette, A. B.
J. Org. Chem. 2009, 74, 8939–8955. (b) Cꢀerat, P.; Gritsch, P. J.;
Goudreau, S. R.; Charette, A. B. Org. Lett. 2010, 12, 564–567. (c)
Lifchits, O.; Charette, A. B. Org. Lett. 2008, 10, 2809–2812. (d) Lifchits,
O.; Alberico, D.; Zakharian, I.; Charette, A. B. J. Org. Chem. 2008,
73, 6838–6840.
Z
cis-cyclopropane R-amino acid derivative (S,S)-Boc-r Phe (9).
R-Cyanoester 5b can be fully reduced to the corresponding
γ-amino alcohol 13 using an excess of LiAlH4 under reflux, the
product obtained from such transformation being an obvious
precursor of the cyclopropane β-amino acid. Using an excess of
DIBAL instead leads to the formation of the cis-β-hydroxyalde-
hyde 12 in high yield. For both substrates, simple transesterifica-
tion is efficient under K2CO3/MeOH conditions in excellent
yields (8 and 14). Moreover, the stereospecific addition of an
aniline under Ni(ClO4)2 6H2O catalysis, previously shown to be
3
efficient on methylnitroacetate derivatives,3c affords outstanding
yields of the ring-opened product in all three cases (7, 11, and
15), with full conservation of the initial enantioselectivity level.
The analogous nucleophilic substitution of a cuprate is also
possible in the case of 4a, affording ring-opened product 16 in
82% yield. In addition, 4a is demonstrated to be a suitable
substrate in a formal cycloaddition with benzaldehyde under
Johnson’s conditions to form chiral tetrahydrofuran 17, although
with a slight loss of stereochemical information in this case.4b
(4) For selected examples of formal cycloadditions on enantioen-
riched electrophilic cyclopropanes and its application in natural product
synthesis, see: (a) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005,
127, 16014–16015. (b) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.;
Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642–8650. (c) Campbell,
M. J.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 10370–10371. (d) Jackson,
S. K.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008,
130, 4196–4201. (e) Young, I. S.; Kerr, M. A. Angew. Chem., Int. Ed.
2003, 42, 3023–3026. (f) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc.
2007, 129, 1465–1469. (g) Perreault, C.; Goudreau, S. R.; Zimmer, L. E.;
Charette, A. B. Org. Lett. 2008, 10, 689–692.
(5) For asymmetric Rh(II)-catalyzed cyclopropanations with car-
bene precursors bearing geminal electron-withdrawing groups, see ref
3a and (a) Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc.
2009, 131, 16383–16385. (b) Marcoux, D.; Charette, A. B. Angew.
Chem., Int. Ed. 2008, 47, 10155–10158. (c) Marcoux, D.; Azzi, S.;
Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970–6972. (d) Lin, W.;
Charette, A. B. Adv. Synth. Catal. 2005, 347, 1547–1552. (e) Charette,
A. B.; Wurz, R. J. Mol. Catal. A 2003, 196, 83–91. (f) Doyle, M. P.;
Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145–1147. (g) Ghanem, A.;
Gardiner, M. G.; Williamson, R. M.; M€uller, P. Chem.—Eur. J. 2010,
16, 3291–3295.
(6) For other asymmetric metal-catalyzed cyclopropanations with
carbene precursors bearing geminal electron-withdrawing groups, see
the following. With Cu(I): (a) Moreau, B.; Charette, A. B. J. Am. Chem.
Soc. 2005, 127, 18014–18015. With Co(II):(b) Zhu, S.; Perman, J. A.;
Zhang, X. P. Angew. Chem., Int. Ed. 2008, 47, 8460–8463. (c) Zhu, S.; Xu,
X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796–12799.
(d) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. J. Am.
Chem. Soc. 2010, 132, 10891–10902. (e) Doyle, M. P. Angew. Chem., Int.
Ed. 2009, 48, 850–852.
’ CONCLUSION
In summary, on the basis of our experimental evidence concern-
ing the stereoinduction mechanism in Rh2(S-TCPTTL)4-catalyzed
cyclopropanations, we have designed and developed a highly
stereoselective cyclopropanation of alkenes with R-EWG-diazoa-
cetophenones, where EWG = NO2, CN, or CO2Me. The methods
feature the use of a PMP-ketone as diastereo- and enantioselectivity
control group, which can be transformed to activated esters
following the cyclopropanation for further functionalization. The
efficient access to enantiopure material is demonstrated, along with
a myriad of transformations for which these cyclopropanes are
useful substrates. For instance, the synthesis of highly enantioen-
riched cyclopropane R- and β-amino acid derivatives, R-chiral
amines, and tetrahydrofurans was successfully achieved.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, com-
b
pound characterization data, and NMR spectra for new compounds.
This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
(7) (a) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S.
Tetrahedron Lett. 2002, 43, 9561–9564. (b) Anada, M.; Tanaka, M.;
Shimada, N.; Nambu, H.; Yamawaki, M.; Hashimoto, S. Tetrahedron
2009, 65, 3069–3077.
(8) (a) Shimada, N.; Anada, M.; Nakamura, S.; Nambu, H.; Tsutsui,
H.; Hashimoto, S. Org. Lett. 2008, 10, 3603–3606. (b) Shimada, N.;
Hanari, T.; Kurosaki, Y.; Takeda, K.; Anada, M.; Nambu, H.; Shiro, M.;
Hashimoto, S. J. Org. Chem. 2010, 75, 6039–6042.
’ ACKNOWLEDGMENT
This work was supported by the Natural Science and En-
gineering Research Council of Canada (NSERC), the Canada
Foundation for Innovation, the Canada Research Chair Program,
the Centre in Green Chemistry and Catalysis (CGCC) and the
Universitꢀe de Montrꢀeal. V.N.G.L. is grateful to NSERC (PGS D)
and the Universitꢀe de Montrꢀeal for postgraduate fellowships. We
8980
dx.doi.org/10.1021/ja201237j |J. Am. Chem. Soc. 2011, 133, 8972–8981