Table 1 The cyclooligomerization of substituted arylethynes p,m-X–C6H4–CRCH and 1-ethynyl- or 2-ethynyl-naphtalene using 1 as the
catalyst.a Data from previous papers are reported in parentheses
Entry
Substrate X
Conversion (%)
Yield of cyclodimers (%)b
Yield of cyclotrimers (%)b
1
2
3
4
5
6
7
8
H
p-Cl
p-OCH3
m-OCH3
p-CH3
p-F
93
98
99
99
94
99
99
98
72 (23)d
50 (1)e
66 (49)e
93 (78)c,e
82 (69)e
40
21 (68)d
48 (98)e
33 (14)e
6 (21)e
12 (30)e
59
1-Ethynyl-naphthalenef
2-Ethynyl-naphthalenef
89 (86)g
97 (89)g
— (4)g
— (7)g
a
b
c
Reactions carried out at 160–180 1C with a molar ratio of substrate : catalyst = 5700 : 1. Yields determined by GC analysis. Two isomers
(1 : 1 ratio). From ref. 5b with Ru(OEP)CO as the catalyst. From ref. 5a with Rh(TDCPP)Cl as the catalyst. In 1,2-dichlorobenzene at
d
e
f
g
160 1C. From ref. 5d with Ru(OEP)CO as the catalyst.
2 W. Reppe, N. Kutepow and A. Magin, Angew. Chem., Int. Ed.
Engl., 1969, 8, 717.
3 (a) L. P. Yur’eva, Russ. Chem. Rev., 1974, 43, 48; (b) K. P. C.
Vollhardt, Acc. Chem. Res., 1977, 10, 1; (c) K. P. C. Vollhardt,
Angew. Chem., Int. Ed. Engl., 1984, 23, 539; (d) P. M. Maitlis,
J. Organomet. Chem., 1980, 200, 161; (e) N. E. Shore, Chem. Rev.,
1988, 88, 1081; (f) M. Lautens, W. Klute and W. Tam, Chem. Rev.,
1996, 96, 490; (g) V. O. Reikhsfel and K. L. Makovetskii, Russ.
Chem. Rev., 1966, 35, 510; (h) P. M. Maitlis, Acc. Chem. Res., 1976,
9, 93–99.
4 V. S. Iyer, K. P. C. Vollhardt and R. Wilhelm, Angew. Chem., Int.
Ed., 2003, 42, 4379.
Scheme 1 The cyclodimerization mechanism does not operate for a
2,6-disubstituted ethynylbenzene.
5 (a) P. Tagliatesta, B. Floris, P. Galloni, A. Leoni and
G. D’Arcangelo, Inorg. Chem., 2003, 42, 7701; (b) E. Elakkari,
B. Floris, P. Galloni and P. Tagliatesta, Eur. J. Org. Chem., 2005,
889; (c) V. Conte, E. Elakkari, B. Floris, V. Mirruzzo and
P. Tagliatesta, Chem. Commun., 2005, 1587; (d) P. Tagliatesta,
E. Elakkari, A. Leoni, A. Lembo and D. Cicero, New J. Chem.,
2008, 32, 1847.
6 (a) B. Meunier, Chem. Rev., 1992, 92, 1411; (b) D. Mansuy, Coord.
Chem. Rev., 1993, 125, 129; (c) M. W. Grinstaff, M. G. Hill,
J. A. Labinger and H. B. Gray, Science, 1994, 264, 1311;
(d) P. E. Ellis Jr and J. E. Lyons, Coord. Chem. Rev., 1990, 105,
181; (e) J. F. Bartoli, O. Brigaud, P. Battioni and D. Mansuy,
J. Chem. Soc., Chem. Commun., 1991, 440; (f) T. G. Traylor and
S. Tsuchiya, Inorg. Chem., 1987, 26, 1338; (g) T. Wijesekara,
A. Matsumoto, D. Dolphin and D. Lexa, Angew. Chem., Int. Ed.
Engl., 1990, 29, 1028; (h) M. N. Carrier, C. Scheer, P. Gouvine,
J. F. Bartoli, P. Battioni and D. Mansuy, Tetrahedron Lett., 1990, 31,
6645; (i) B. Meunier, A. Robert, G. Pratviel and J. Bernadou, in The
Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard,
Academic Press, Amsterdam, 2000, vol. 4, ch. 31, pp. 119–187.
7 (a) J. Robbins Wolf, C. G. Hamaker, J.-P. Djukic, T. Kodadek and
L. K. Woo, J. Am. Chem. Soc., 1995, 117, 9194; (b) J. L. Maxwell,
K. C. Brown, D. W. Bartley and T. Kodadek, Science, 1992, 256,
1544; (c) S. O’Malley and T. Kodadek, Tetrahedron Lett., 1991, 32,
2445; (d) D. W. Bartley and T. Kodadek, Tetrahedron Lett., 1990, 31,
6303; (e) H. J. Callot and C. Piechocki, Tetrahedron Lett., 1980, 21,
3489; (f) H. J. Callot, E. Metz and C. Piechocki, Tetrahedron, 1982,
38, 2365; (g) C. G. Hamaker, G. A. Mirafzal and L. K. Woo,
Organometallics, 2001, 20, 5171; (h) P. Tagliatesta and A. Pastorini,
J. Mol. Catal. A: Chem., 2003, 198, 57; (i) C. G. Hamaker,
J.-P. Djukic, D. A. Smith and L. K. Woo, Organometallics, 2001,
20, 5189; (j) P. Tagliatesta and A. Pastorini, J. Mol. Catal. A: Chem.,
2002, 185, 127; (k) A. Penoni, R. Wanke, S. Tollari, E. Gallo,
D. Musella, F. Ragaini, F. Demartin and S. Cenini, Eur. J. Inorg.
Chem., 2003, 1452; (l) E. Galardon, P. Le Maux and G. Simonneaux,
Chem. Commun., 1997, 927; (m) M. Frauenkron and A. Berkessel,
Tetrahedron Lett., 1997, 38, 7175; (n) Z. Gross, N. Galili and
L. Simkhovic, Tetrahedron Lett., 1999, 40, 1571; (o) E. Galardon,
P. Le Maux, L. Toupet and G. Simonneaux, Organometallics, 1998,
17, 565; (p) E. Galardon, P. Le Maux and G. Simonneaux,
Tetrahedron, 2000, 56, 615; (q) J.-L. Zhang and C.-M. Che, Org. Lett.,
2002, 4, 1911; (r) Y. Li, J.-S. Huang, G.-B. Xu, N. Zhu, Z.-Y. Zhou,
C.-M. Che and K.-Y. Wong, Chem.–Eur. J., 2004, 10, 3486.
8 C.-Y. Zhou and W.-Y. C.-M. Che, Org. Lett., 2002, 4, 3235.
Scheme 2 Reaction products and yields for the cyclooligomerization
of 2,6-dimethoxy-ethynylbenzene.
Scheme 3 The reaction mechanism and the deuterium fate of the
2-deutero-ethynylbenzene.
Conclusions
In this paper, we have reported an improvement in the dimer
yield for the cyclooligomerization of arylethynes by the use of
a vanadium phthalocyanine. Furthermore, we made observations
that support our hypothesis about the presence of a vinylidene
intermediate during the cyclodimerization reaction.
Notes and references
1 Acetylene Chemistry: Chemistry, Biology, and Material Science,
ed. F. Diederich, P. J. Stang and R. R. Tykwinski, Wiley-VCH,
Weinheim, 2005.
ꢀc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
2164 | New J. Chem., 2009, 33, 2162–2165