Communications
[5] For recent examples, see: a) A. Gallardo-Godoy, A. Fierro, T. H.
McLean, M. Castillo, B. K. Cassels, M. Reyes-Parada, D. E.
Atack, M. S. Chambers, S. M. Cook, A. J. Macaulay, G. V. Pillai,
c) S. A. Bowden, J. N. Burke, F. Gray, S. McKown, J. D. Moseley,
W. O. Moss, P. M. Murray, M. J. Welham, J. Young, Org. Process
Barthlow, P. R. Bernstein, R. A. Bialecki, R. Dedinas, B. T.
Dembofsky, D. Hill, K. Kirkland, G. M. Koether, B. J. Kosmider,
C. Ohnmacht, W. Palmer, W. Potts, W. Rumsey, L. Shen, A.
[6] For recent examples, see: a) P. Garcꢁa-Garcꢁa, F. Lay, P. Garcꢁa-
Garcꢁa, C. Rabalakos, B. List, Angew. Chem. 2009, 121, 4427;
Angew. Chem. Int. Ed. 2009, 48, 4363; b) J. Ballmann, M. G. G.
c) M. Hatano, T. Maki, K. Moriyama, M. Inobe, K. Ishihara, J.
W. Tang, G. A. Doss, B. J. Dean, F. DiNinno, M. L. Hammond,
Doro, M. G. Sanna, S. Gladiali, Inorg. Chim. Acta 2004, 357,
2957; f) Y.-H. Cho, A. Kina, T. Shimada, T. Hayashi, J. Org.
Chem. Rev. 2003, 103, 3213; h) S. Gladiali, G. Loriga, S. Medici,
R. Taras, J. Mol. Catal. A 2003, 196, 27.
[7] For recent examples, see: a) R. Zieba, C. Desroches, F. Chaput,
5401; b) L. Vial, R. F. Ludlow, J. Leclaire, R. Perez-Fernandez, S.
2002, 2, 21; e) P. Rao, O. Enger, E. Graf, M. W. Hosseini, A. D.
G. B. Caygill, P. D. Croucher, T. C. Davidson, D. L. J. Clive, S. R.
[8] I. Llarena, A. C. Benniston, G. Izzet, D. B. Rewinska, R. W.
[9] a) A. Blaszczyk, M. Chadim, C. von Hꢂnisch, M. Mayor, Eur. J.
Org. Chem. 2006, 3809; b) V. Francke, T. Mangel, K. Mꢃllen,
certainly lie at higher energy. The predicted on-cycle resting
state is a k2-S(CO)NMe2 intermediate (4a), which can
undergo reversible reductive elimination (III) to give a
[Pd(2a)(tBu3P)] complex through
a more conventional
three-membered TS. Substitution of 2a by 1a leads, in the
predicted turnover-limiting step (IV), to product (2a) with the
regeneration of [Pd(1a)(tBu3P)]. Intermediate 4a can also
cross-over (V) through the corresponding m-O,S-bound dimer
(4)2. The equilibration of the resting state between (4a)2 and
[Pd(2a)(tBu3P)] accounts for the extent of cross-over increas-
ing with both conversion (decreasing [1a]) and catalyst
loading (increasing [4]). The TS for substitution of product
(2a) in [Pd(2a)(tBu3P)] by tBu3P (VI) is only 4 kcalmolꢀ1
higher in energy than that involving 1a (IV). The extent of
cross-over, particularly at high conversions of 1a, can thus be
attenuated by added tBu3P.
In summary, we report the first catalyst for the Newman–
Kwart rearrangement (1!2),[1] an efficient reaction for
generation of Ar–S compounds from phenols. This reaction
normally requires high temperatures (200–3008C), but in the
presence of [Pd(tBu3P)2] proceeds smoothly at 1008C with a
range of substrates (Table 1, entries 4–11). Substrates such as
1a which bear activating electron-withdrawing substituents,
rearrange, albeit inefficiently, at temperatures as low as 218C
(entry 1). Preliminary investigations suggest that a thio-
coordinated monophosphine–palladium complex, [Pd(1)-
(tBu3P)], engages in an oxidative addition/tautomerisation/
reductive elimination sequence,[18,29] and that the latter parts
of the cycle are readily accessible through re-insertion of Pd
into the CAr S bond of 2a.[26] The steric bulk in tBu3P appears
ꢀ
to favour loss of one phosphine from [Pd(tBu3P)2]; nonethe-
less other ligands, and indeed metals, may be more effective.
The thiocarbamate moiety, although readily installed and
inexpensive,[15] is not the ideal partner for the catalytic events;
other Ar-OC(X)-R species may undergo catalyzed rearrange-
ment at much lower temperatures.[30] We are currently
exploring these aspects in detail.
1206; b) V. Percec, T. K. Bera, B. B. De, Y. Sanai, J. Smith, M. N.
Received: July 16, 2009
Published online: September 10, 2009
[11] O. Hara, T. Nakamura, K. Makino, Y. Hamada, Heterocycles
2006, 68, 101.
Keywords: homogeneous catalysis · palladium ·
reaction mechanism · rearrangement · sulfur compounds
.
´
[12] F. Teply, I. G. Stara, I. Stary, A. Kollarovic, D. Sꢄaman, S.
Vyskocil, P. Fiedler, J. Org. Chem. 2003, 68, 5193.
[13] a) J. D. Moseley, R. F. Sankey, O. N. Tang, J. P. Gilday, Tetrahe-
Ruda, J.-P. Sherlock, A. D. Thomson, J. P. Gilday, Org. Process
2009, 1321; b) U. Tilstam, T. Defrance, T. Giard, M. D. Johnson,
Moon, K. T. Porter, C. A. Rossman, T. Zennie, J. Wemple, Org.
[15] Me2NC(S)Cl is an inexpensive reagent that is available in bulk,
see: a) D. Kusch, Spec. Chem. 2003, November, 41; b) A. A.
Ponaras, O. Zaim, in The Encyclopedia of Reagents for Organic
Synthesis, Vol. 3 (Eds.: L. A. Paquette), Wiley, New York, 1995,
p. 2174.
275, 131; b) G. C. Lloyd-Jones, J. D. Moseley, J. S. Renny,
Synthesis 2008, 661.
Miyazaki, J. Ann. Meeting Chem. Soc. Jpn. 1965, 175; Zonta
et al.[1a] suggest the term Miyazaki–Newman–Kwart rearrange-
ment.
[4] Smiles rearrangement: a) A. A. Levy, H. C. Rains, S. Smiles, J.
c) A. Schꢀnberg, L. Vargha, Ber. Dtsch. Chem. Ges. 1930, 63,
[16] The NKR has been subject to detailed mechanistic studies, most
of which support reaction proceeding through A, see ref. [3b]
7614
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2009, 48, 7612 –7615