B. A. Marples, J. Chem. Soc. C, 1968, 664; (c) D. D. Callander,
P. L. Coe, J. C. Tatlow and A. J. Uff, Tetrahedron, 1969, 25, 25.
3 For a review, see: (a) M. A. Esteruelas and L. A. Oro, Coord.
Chem. Rev., 1999, 193–195, 557; For selected examples, see:
(b) D. M. Roe and A. G. Massey, J. Organomet. Chem., 1969,
17, 429; (c) D. M. Roe and A. G. Massey, J. Organomet. Chem.,
1971, 28, 273; (d) R. Uso
´
and C. Rebullida, J. Organomet. Chem., 1980, 197, 87; (e) R. Uso
L. A. Oro, L. D. Carmona, M. A. Esteruelas, C. Foces-Foces,
F. H. Cano and S. Garcia-Blanco, J. Organomet. Chem., 1983, 254,
249.
n, L. A. Oro, R. Sariego, M. Valderrama
n,
´
Scheme 4 The asymmetric double arylation of 8.
1 mol% rhodium was complete within 3 h (Table 1, entry 10).
The absolute configuration of 7am, produced by the use of
(S,S)-1f, was determined to be (S) by comparisons of its
specific rotation and retention time in chiral HPLC with those
values reported previously.14
4 (a) T. Nishimura, M. Nagaosa and T. Hayashi, Chem. Lett., 2008,
37, 860; (b) T. Nishimura, Y. Yasuhara, M. Nagaosa and
T. Hayashi, Tetrahedron: Asymmetry, 2008, 19, 1778.
5 Compound
3
was prepared by
a
modified procedure:
(a) B. Hankinson and H. Heaney, Tetrahedron Lett., 1970, 11,
1335; (b) P. C. Buxton, N. J. Hales, B. Hankinson, H. Heaney,
S. V. Ley and R. P. Sharma, J. Chem. Soc., Perkin Trans. 1, 1974,
2681.
Table 2 summarizes the results obtained for the reactions of
several aldehydes 5 with arylboronic acids 6, which were
carried out in the presence of [RhCl((S,S)-Fc-tfb*(1f))]2
(1 or 3 mol% of Rh). The scope of the aldehydes was broad,
examples variously substituted with electron-withdrawing
groups and electron-donating groups were good substrates
and produced diarylmethanols in high yields (Table 2,
entries 1–11). Enantioselectivities in the phenylation of
aldehydes having ortho-substituents (Table 2, entries 1–5) on
the benzene ring were higher than those obtained with meta-
or para-substituted aromatic aldehydes (Table 2, entries 6–9).
The scope of arylboronic acids was also broad (Table 2,
entries 12–24), where the use of ortho-substituted arylboronic
acids displayed higher enantioselectivities of diarylmethanols 7
(Table 2, entries 13–15 for MeC6H4B(OH)2). Thus, the present
catalytic system is effective for the asymmetric synthesis of
diarylmethanols having ortho-substituents on both aromatic
rings, the enantioselectivity ranging between 84 and 94% ee
(Table 2, entries 15–22). The asymmetric double arylation of
isophthalaldehyde (8) was also successful, using mesityl-
boronic acid (6u) to give a 98% ee of chiral diol 9 (75% yield,
chiral : meso = 85 : 15) (Scheme 4).17
6 A semi-preparative column (2.0 cm ID ꢂ 25 cm) was used for the
resolution of dl-3. See the ESIz.
7 K. Vandyck, B. Matthys, M. Willen, K. Robeyns, L. Van Meervelt
and J. Van der Eycken, Org. Lett., 2006, 8, 363.
8 (a) B. Scheiper, M. Bonnekessel, H. Krause and A. Furstner,
¨
J. Org. Chem., 2004, 69, 3943; (b) G. Berthon-Gelloz and
T. Hayashi, J. Org. Chem., 2006, 71, 8957.
9 C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei,
G. A. Chass, A. Lough, A. C. Hopkinson and M. G. Organ,
Chem.–Eur. J., 2006, 12, 4743.
10 M. Enders, G. Kohl and H. Pritzkow, J. Organomet. Chem., 2001,
622, 66.
11 Crystal data for Rh((S,S)-1f)[(Z6-C6H5)BPh3] are reported in the
ESIz.
12 For reviews, see: (a) M. Hatano, T. Miyamoto and K. Ishihara,
Curr. Org. Chem., 2007, 11, 127; (b) F. Schmidt, R. T. Stemmler,
J. Rudolph and C. Bolm, Chem. Soc. Rev., 2006, 35, 454; (c) L. Pu
and H.-B. Yu, Chem. Rev., 2001, 101, 757; (d) K. Soai and S. Niwa,
Chem. Rev., 1992, 92, 833; (e) R. Noyori and M. Kitamura, Angew.
Chem., Int. Ed. Engl., 1991, 30, 49.
13 For selected examples of the asymmetric addition of diphenylzinc
to aldehydes, see: (a) P. I. Dosa, J. C. Ruble and G. C. Fu, J. Org.
Chem., 1997, 62, 444; (b) C. Bolm and K. Muniz, Chem. Commun.,
1999, 1295; (c) W.-S. Huang and L. Pu, J. Org. Chem., 1999, 64,
4222; For selected examples of the asymmetric addition of diaryl-
zinc generated from arylboron reagents, see: (d) C. Bolm and
J. Rudolph, J. Am. Chem. Soc., 2002, 124, 14850; (e) S. Dahmen
and M. Lormann, Org. Lett., 2005, 7, 4597; (f) J.-X. Ji, J. Wu, T.
T.-L. Au-Yeung, C.-W. Yip, R. K. Haynes and A. S. C. Chan,
J. Org. Chem., 2005, 70, 1093; (g) X. Y. Liu, X. Y. Wu, Z. Chai,
Y. Y. Wu, G. Zhao and S. Z. Zhu, J. Org. Chem., 2005, 70, 7432;
This work was supported by a Grant-in-Aid for Scientific
Research (S) (19105002) from the MEXT, Japan.
Notes and references
(h) A. L. Braga, D. S. Ludtke, F. Vargas and M. W. Paixao, Chem.
¨
Commun., 2005, 2512; (i) M.-J. Jin, S. M. Sarkar, D.-H. Lee and
H. Qiu, Org. Lett., 2008, 10, 1235.
1 For a review of chiral diene ligands, see: (a) C. Defieber,
H. Grutzmacher and E. M. Carreira, Angew. Chem., Int. Ed.,
¨
14 Enantioselectivity up to 87% (ref. 14e) has been reported:
(a) M. Sakai, M. Ueda and N. Miyaura, Angew. Chem., Int. Ed.,
1998, 37, 3279; (b) T. Focken, J. Rudolph and C. Bolm, Synthesis,
2005, 429; (c) W. Zhang, Y. Qin, S. Zhang and M. Luo,
ARKIVOC, 2005, 14, 39; (d) R. B. C. Jagt, P. Y. Toullec,
J. G. de Vries, B. L. Feringa and A. J. Minnaard, Org. Biomol.
Chem., 2006, 4, 773; (e) H.-F. Duan, J.-H. Xie, W.-J. Shi, Q. Zhang
and Q.-L. Zhou, Org. Lett., 2006, 8, 1479; (f) T. Arao, K. Sato,
K. Kondo and T. Aoyama, Chem. Pharm. Bull., 2006, 54, 1576;
(g) K. Suzuki, K. Kondo and T. Aoyama, Synthesis, 2006, 1360;
(h) K. Suzuki, S. Ishii, K. Kondo and T. Aoyama, Synlett, 2006,
648; (i) T. Arao, K. Suzuki, K. Kondo and T. Aoyama, Synthesis,
2006, 3809.
2008, 47, 4482; For selected examples of the asymmetric reactions
using chiral diene ligands, see: (b) T. Hayashi, K. Ueyama,
N. Tokunaga and K. Yoshida, J. Am. Chem. Soc., 2003, 125,
11508; (c) N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama,
R. Shintani and T. Hayashi, J. Am. Chem. Soc., 2004, 126, 13584;
(d) Y. Otomaru, K. Okamoto, R. Shintani and T. Hayashi, J. Org.
Chem., 2005, 70, 2503; (e) K. Okamoto, T. Hayashi and
V. H. Rawal, Org. Lett., 2008, 10, 4387; (f) C. Fischer,
C. Defieber, T. Suzuki and E. M. Carreira, J. Am. Chem. Soc.,
2004, 126, 1628; (g) J.-F. Paquin, C. Defieber, C. R. J. Stephenson
and E. M. Carreira, J. Am. Chem. Soc., 2005, 127, 10850;
(h) F. Lang, F. Breher, D. Stein and H. Grutzmacher, Organo-
¨
¨
metallics, 2005, 24, 2997; (i) S. Helbig, S. Sauer, N. Cramer,
S. Laschat, A. Baro and W. Frey, Adv. Synth. Catal., 2007, 349,
2331; (j) Z.-Q. Wang, C.-G. Feng, M.-H. Xu and G.-Q. Lin, J. Am.
15 (a) T. Arao, K. Kondo and T. Aoyama, Tetrahedron Lett., 2007,
48, 4115; (b) K. Yamamoto, K. Tsurumi, F. Sakurai, K. Kondo
and T. Aoyama, Synthesis, 2008, 3585.
Chem. Soc., 2007, 129, 5336; (k) T. Noel, K. Vandyck and J. Van
¨
16 Highly enantioselective ruthenium-catalyzed arylation has been
reported very recently: K. Kurihara, Y. Yamamoto and
N. Miyaura, Angew. Chem., Int. Ed., 2009, 351, 4414.
17 K. Soai, Y. Inoue, T. Takahashi and T. Shibata, Tetrahedron,
1996, 52, 13355.
der Eycken, Tetrahedron, 2007, 63, 12961; (l) T. Gendrineau,
O. Chuzel, H. Eijsberg, J.-P. Genet and S. Darses, Angew. Chem.,
Int. Ed., 2008, 47, 7669.
2 (a) J. P. N. Brewer and H. Heaney, Tetrahedron Lett., 1965, 6,
4709; (b) J. P. N. Brewer, I. F. Eckhard, H. Heaney and
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5713–5715 | 5715