LETTER
Regioselective Functionalization of myo-Inositol
2289
(6) (a) Kim, S. C.; Kim, T. Y.; Lee, S. Y.; Roh, S. H.; Nam,
K. D. Kongop Hwahak 1994, 5, 573. (b) Tsuzuki, W.;
Kitamura, Y.; Suzuki, T.; Kobayashi, S. Biotechnol. Bioeng.
1999, 64, 267. (c) Blunk, D.; Bierganns, P.; Bongartz, N.;
Tessendorf, R.; Stubenrauch, C. New J. Chem. 2006, 30,
1705. (d) Catanoiu, G.; Gärtner, V.; Stubenrauch, C.; Blunk,
D. Langmuir 2007, 23, 12802. (e) Neto, V.; Granet, R.;
Mackenzie, G.; Krausz, P. J. Carbohydr. Chem. 2008, 27,
231.
OH
OH
O
O
O
O
O
O
Sii-Pr2
Sii-Pr2
i-Pr2Si
i-Pr2Si
i-Pr2Si(Cl)-O-(Cl)Sii-Pr2
DMSO, Py (5:3)
1
2h (88%)
Equation 3
(7) (a) Sureshan, K. M.; Shashidhar, M. S.; Varma, A. J. J. Org.
Chem. 2002, 67, 6884. (b) Dixit, S. S.; Shashidhar, M. S.;
Devaraj, S. Tetrahedron 2006, 62, 4360.
(8) (a) Hosoda, A.; Miyake, Y.; Nomura, E.; Taniguchi, H.
Chem. Lett. 2003, 32, 1042. (b) Watanabe, Y.; Miyasou, T.;
Hayashi, M. Org. Lett. 2004, 6, 1547. (c) Sureshan, K. M.;
Yamaguchi, K.; Sei, Y.; Watanabe, Y. Eur. J. Org. Chem.
2004, 4703.
(9) (a) Chida, N. J. Synth. Org. Chem. Jpn. 2000, 58, 642.
(b) Suzuki, T.; Suzuki, S. T.; Yamada, I.; Koashi, Y.;
Yamada, K.; Chida, N. J. Org. Chem. 2002, 67, 2874.
(10) Kwon, Y.-K.; Lee, C.; Chung, S.-K. J. Org. Chem. 2002, 67,
3327.
(11) Sureshan, K. M.; Shashidhar, M. S.; Praveen, T.; Das, T.
Chem. Rev. 2003, 103, 4477.
and other volatile materials under reduced pressure,
showed that the 1,3-disulfonate was almost exclusively
formed, however the isolated yield was about 80%. This
deviation could be due to the loss of the product during
aqueous workup as mentioned above. Similarly, phosphi-
nylation also proceeded in a highly regioselective manner
to give 1,3-diphosphinate in good yield.
In summary, the dissolution strategy has allowed to
achieve the regioselective functionalization of unprotect-
ed myo-inositol in high yield.23 The procedure reported
here provides a practical synthetic method for 1,3-difunc-
tionalized inositol derivatives. The results presented here
will be of interest not only to inositol chemists but also to
a broad section of organic chemists given the application
of inositol derivatives in a wide range of applications such
as synthons for natural products, catalysts, supramolecu-
lar assemblies etc.
(12) Suami, T.; Ogawa, S.; Oki, S. Bull. Chem. Soc. Jpn. 1971,
44, 2824.
(13) Angyal, S. J.; Bender, V.; Curtin, J. H. J. Chem. Soc. 1966,
798.
(14) Chung, S.-K.; Chang, Y.-T. Bioorg. Med. Chem. Lett. 1997,
7, 2715.
(15) Kuhn, R.; Trischmann, H. Chem. Ber. 1963, 96, 284.
(16) Wewers, W.; Gillandt, H.; Traub, H. S. Tetrahedron:
Asymmetry 2005, 16, 1723.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific Research
(C) (19550166). We thank the Venture Business Laboratory (VBL)
and the Institute for Cooperative Science (INCS), Ehime University
for NMR and elemental analysis.
(17) In addition to refs. 2–4, see: (a) Angyal, S. J.; Tate, M. E.;
Gero, S. D. J. Chem. Soc. 1961, 4116. (b) Suami, T.;
Ogawa, S.; Tanaka, T.; Otake, T. Bull. Chem. Soc. Jpn.
1971, 44, 835. (c) Chung, S.-K.; Ryu, Y. Carbohydr. Res.
1994, 258, 145. (d) Kubiak, R. J.; Bruzik, K. S. J. Org.
Chem. 2003, 68, 960. (e) Watanabe, Y.; Kiyosawa, Y.;
Hyodo, S.; Hayashi, M. Tetrahedron Lett. 2005, 46, 281.
(18) (a) Braz, G. I.; Voznesenskaya, N. N.; Yakubovich, A. Y.
J. Org. Chem. USSR (Engl. Transl.) 1973, 9, 114. (b) A
related reaction of ethyl chloroformate with DMA in the
presence of triethylamine followed by reaction with benzoyl
chloride was reported: Kira, M. A.; Zayed, A. A.; Fathy,
N. M. Egypt. J. Chem. 1983, 26, 253.
References and Notes
(1) Berridge, M. J. Nature (London) 1993, 361, 315.
(2) (a) Billington, D. C. The Inositol Phosphates, Chemical
Synthesis and Biological Significance; Wiley-VCH:
Weinheim, 1993. (b) Watanabe, Y. Selective Reactions and
Total Synthesis of Inositol Phosphates, In Studies in Natural
Products Chemistry, Stereoselective Synthesis (Part K), Vol.
18; Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam, 1996,
391–456.
(3) (a) Reitz, A. B. Inositol Phosphates and Derivatives,
Synthesis, Biochemistry, and Therapeutic Potential;
American Chemical Society: Washington DC, 1991.
(b) Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl.
1995, 34, 1933. (c) Morgan, A. J.; Komiya, S.; Xu, Y.;
Miller, S. J. J. Org. Chem. 2006, 71, 6923.
(4) (a) Gigg, J.; Gigg, R. Top. Curr. Chem. 1990, 154, 77.
(b) Prestwich, G. D. Acc. Chem. Res. 1996, 29, 503.
(c) Bruzik, K. S. Phosphoinositides: Chemistry,
Biochemistry and Biomedical Applications; American
Chemical Society: Washington DC, 1998. (d) Xu, Y.;
Sculimbrene, B. R.; Miller, S. J. J. Org. Chem. 2006, 71,
4919.
(5) (a) Praefcke, K.; Kohne, B.; Psaras, P.; Hempel, J.
J. Carbohydr. Chem. 1991, 10, 523. (b) Praefcke, K.;
Marquardt, P.; Kohne, B.; Stephan, W. J. Carbohydr. Chem.
1991, 10, 539. (c) Praefcke, K.; Blunk, D. Liquid Cryst.
1993, 14, 1181.
(19) McCormick, C. L.; Dawsey, T. R.; Newman, J. K.
Carbohydr. Res. 1990, 208, 183.
(20) (a) Bordwell, F. G.; Pitt, B. M. J. Am. Chem. Soc. 1955, 77,
572. (b) Dilworth, B. M.; McKervey, M. A. Tetrahedron
1986, 42, 3731.
(21) When a solution of dinaphthoate in EtOAc was washed with
H2O, the dinaphthoate could be recovered completely in the
organic layer. However, the presence of DMA in the solution
resulted in the loss of about 10% of the dinaphthoate into the
aqueous layer.
(22) Watanabe, Y.; Mitani, M.; Morita, T.; Ozaki, S. J. Chem.
Soc., Chem. Commun. 1989, 482.
(23) myo-Inositol was dried prior to the reaction. Commercial
myo-inositol was first dried by heating at 200 °C for 12 h
under reduced pressure (0.5 mmHg) and secondly, the
inositol was treated three times with pyridine (1 g Ins/5 mL
Py) under atmospheric pressure to remove azeotropically a
trace of H2O. The resulting inositol was finally heated at 120
°C for 12 h under reduced pressure (0.5 mmHg). Anhydrous
DMA and DMSO were obtained by treating with powdered
CaH2 and BaO overnight, respectively, and subsequent
Synlett 2009, No. 14, 2287–2290 © Thieme Stuttgart · New York