Vallin et al.
JOCArticle
on analogous KRs, where Qof 1 is represented by benzene41-43
or by heterocycles such as furan,42 thiophene,44,45 and pyri-
dine,46 are more frequent. The fact that one enantiomer can be
obtained in only a 50% maximum yield from the racemate by
any conventional KR has brought much attention to the
concept of dynamic kinetic resolution (DKR),47 where a
theoretic yield of 100% can be reached. In DKR, the enantio-
mer discriminated by the irreversible KR process is simulta-
neously racemized, or inverted, by a second process run in situ.
Since the second process is in equilibrium with the first, a full
overall conversion is achievable (Scheme 1).
FIGURE 1. Q is a five-membered heterocyclic ring.
Thus, heteroaryl ethanols 1 constitute a highly interesting
small molecular scaffold in drug research structural optimiza-
tion. Synthetic approaches often are limited to the use of a
chiral starting material,19-22 if not on tedious chiral separation
alone. General methodologies for the construction of various
chiral heterocyclic compounds 1 from either achiral or race-
mic precursors are therefore desired. Previous reports on the
former include stereoselective reductions5,20,23-30 and the use of
biocatalysts in the form of either isolated enzymes or whole
cells.25,31-34 Earlier literature describing the latter comprise
resolution by chromatographic separation,35 enzymatic de-
racemization,36 and kinetic resolution (KR) by selective oxi-
dation of one of the enantiomers.37,38 To our knowledge, only
two reports on successful KR through lipase-catalyzed acyla-
tion of racemic alcohols 1 have been published, both of them
including a thiazole as the heterocyclic moiety Q.39,40 Reports
SCHEME 1. DKR versus KR
(9) Acton, J. J. I. et al. WO2004020409(A1), 20040311p.
(10) Iino, T. et al. WO2004076420(A1), 20040910.
(11) Cooper, C. B., Helal, C. J., Sanner, M. A., Wager, T. T.
WO2002018346(A1), 20020307.
(12) Laine, D. I., Bell, R., Busch-Petersen, J., Palovich, M.
WO2004012684(A2), 20040212.
(13) Williams, M. et al. WO2004103980(A1), 20041202.
(14) Wensbo, D. et al. WO2004014881(A2), 20040219.
(15) Chambers, R. J., Magee, T. V., Marfat, A. WO2002060896,
20020808.
The DKR of racemic secondary alcohols, involving a
lipase for the KR process,48-50 was first proven possible by
Williams and co-workers51 when combined with racemiza-
tion mediators based on the metals aluminum, iridium, and
rhodium. A significant improvement was later accomplished
(16) Kanda, Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451–8452.
(17) Schmidt, U.; Griesser, H. Tetrahedron Lett. 1986, 27, 163–166.
(18) Martinez-Diaz, M. V.; Mendoza, J. d.; Torres, T. Synthesis 1994,
1091–1095.
(19) Katritzky, A. R.; Aslan, D. C.; Leeming, P.; Steel, P. J. Tetrahedron:
Asymmetry 1997, 8, 1491–1500.
€
through the pioneering work by Backvall’s group demon-
strating that the ruthenium racemization precatalyst 2,
commonly known as the “Shvo catalyst”, can be well com-
bined with lipases in DKRs.52-54
(20) De Amici, M.; De Micheli, C.; Carrea, G.; Spezia, S. J. Org. Chem.
1989, 54, 2646–2650.
(21) Alonso, J. M.; Martin, M. R.; De Mendoza, J.; Torres, T.; Elguero, J.
Heterocycles 1987, 26, 989–100.
(22) Schmidt, U.; Gleich, P.; Griesser, H.; Utz, R. Synthesis 1986, 992–
998.
(23) Maiti, D0. K.; Bhattacharya, P. K. Synth. Commun. 1998, 28, 99–
108.
(24) Tucker, C. E. Jiang, Q. US2003171213(A1), 20030911; Cont.-in-part
of U. S. Ser. No. 57,826.
(25) Tamiaki, H.; Kouraba, M.; Takeda, K.; Kondo, S.; Tanikaga, R.
Tetrahedron: Asymmetry 1998, 9, 2101–2111.
(26) Kusch, D.; Montforts, F.-P. Liebigs Ann. 1996, 83–86.
(27) Kusch, K.; Toellner, E.; Linche, A.; Montforts, F.-P. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 784–787.
(28) Montgomery, J. A.; Thomas, H. J.; Zell, A. L.; Einsphar, H. M.;
Bugg, C. E. J. Med. Chem. 1985, 28, 1751–1753.
(29) Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045–4048.
(30) Cao, P.; Zhang, X. J. Org. Chem. 1999, 64, 2127–2129.
(31) Itoh, K.; Sakamaki, H.; Nakamura, K.; Horiuchi, C. A. Tetra-
hedron: Asymmetry 2005, 16, 1403–1408.
(32) Faber, K. Pure Appl. Chem. 1997, 69, 1613–1632.
(33) Bianchi, G.; Comi, G.; Venturini, I. Gazz. Chim. Ital. 1984, 114, 285–
286.
FIGURE 2. Ruthenium precatalysts.
(41) Busto, E.; Gotor-Fernandez, V.; Gotor, V. Tetrahedron: Asymmetry
2005, 16, 3427–3435.
(42) Howe, R. K.; Gruner, T. A.; Carter, L. G.; Black, L. L.; Franz, J. E.
J. Org. Chem. 1978, 43, 3736–3742.
(43) Damas, A. M.; Gould, R. O.; Harding, M. M.; Paton, R. M.; Ross,
J. F.; Crosby, J. J. Chem. Soc,. Perkin Trans. 1 1981, 2991–2995.
(44) Sanders, M. J.; Dye, S. L.; Miller, A. G.; Grunwell, J. R. J. Org.
Chem. 1979, 44, 510–513.
(45) Morrison, A. J.; Paton, R. M.; Sharp, R. D. Synth. Commun. 2005,
35, 807–813.
(34) Guanti, G.; Banfi, L.; Narisano, E. Tetrahedron Lett. 1986, 27, 3547–
3550.
(35) Hou, S.; Wang, M.; Zhou, Z.; Qiao, Z.; Guo, H.; Shi, X. Nongyaoxue
Xuebao 2002, 4, 71–74.
(46) Lipshutz, B. H.; Vaccaro, W.; Huff, B. Tetrahedron Lett. 1986, 27,
4095–4098.
(47) Pellissier, H. Tetrahedron 2003, 59, 8291–8327.
€
(48) Huerta, F. F.; Minidis, A. B. E.; Backvall, J.-E. Chem. Soc. Rev.
(36) Allan, G. R.; Carnell, A. J. J. Org. Chem. 2001, 66, 6495–6497.
(37) Zhou, W.-S.; Wei, D. Tetrahedron: Asymmetry 1991, 2, 767–770.
(38) Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P.; Poli, S.; Gardini,
F. Tetrahedron: Asymmetry 1993, 4, 1607–1612.
(39) Allevi, P.; Ciuffreda, P.; Tarocco, G.; Anastasia, M. J. Org. Chem.
1996, 61, 4144–4147.
2001, 30, 321–331.
(49) Pamies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3247–3261.
€
(50) Kim, M.-J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578–
587.
(51) Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.;
Harris, W. Tetrahedron Lett. 1996, 37, 7623–7626.
€
(52) Pamies, O.; Backvall, J.-E. J. Org. Chem. 2001, 66, 4022–4025.
€
(53) Persson, B. A.; Larsson, A. L. E.; Le Ray, M.; Backvall, J.-E. J. Am.
Chem. Soc. 1999, 121, 1645–1650.
(40) Fuelling, G.; Holla, E. W.; Keller, R. Enantioselective enzymic
esterification of chiral alcohols using vinyl acetate: a concept for reaching
the desired extent of conversion. Opportunities in Biotransformation; SCI:
London, 1990.
€
(54) Johnson, J. B.; Backvall, J.-E. J. Org. Chem. 2003, 68, 7681–7684.
J. Org. Chem. Vol. 74, No. 24, 2009 9329