C O M M U N I C A T I O N S
all-alkyl substitution (eq 3 in Figure 3). Again, indolizidine formation
occurs in high yield (95%) with superb stereoselection (dr g20:1) and
furnishes 7-exomethylene indolizidine 223D (22).11
Delighted that this synthetic strategy proved successful for the synthesis
of simple indolizidine and quinolizidine architectures (16, 19, and 22),
we questioned whether this process would be useful for the synthesis of
more complex polycyclic systems. As depicted in eqs 4-6 in Figure 3,
use of substrates containing additional functionality between the imine
and acetal leads to the formation of complex stereodefined polycyclic
heterocycles in a concise and stereoselective fashion.
In conclusion, we have defined a new convergent bond construction
that serves as a powerful foundation for heterocycle synthesis. A unique
chemoselective functionalization of hydroxymethyl-substituted allylic
silanes provides a facile and stereoselective entry to the indolizidine
and quinolizidine cores. In addition to highlighting the utility of this
heterocycle preparation in the synthesis of 7-exomethylene indolizidine
223D, we have demonstrated the basic coupling process for the
assembly of complex polycyclic heterocycles containing furans,
thiophenes, and indoles. While the control of absolute stereochemistry
in this annulation remains a challenge, the present contribution defines
a reaction sequence of broad utility for heterocycle synthesis. Because
of (1) the ubiquitous nature of indolizidines and quinolizidines in
natural products and small molecules of biomedical relevance, (2) the
ready availability of the coupling partners, (3) the functional-group
compatibility of the chemoselective allyl transfer reaction, (4) the
stereoselectivity of the cationic annulation, and (5) the inexpensive
nature of the reductive cross-coupling process, we look forward to
future developments that emerge from these initial findings.
Acknowledgment. We gratefully acknowledge financial support
of this work by the National Institutes of Health, NIGMS (GM80266
and GM80266-04S1).
Supporting Information Available: Experimental procedures and
tabulated spectroscopic data for new compounds. This material is
References
(1) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
(2) For selected examples, see: (a) Overman, L. E. Tetrahedron 2009, 65, 6432.
(b) Franklin, A. S.; Overman, L. E. Chem. ReV. 1996, 96, 505. (c) Tang,
X.-Q.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6950. (d) Denmark,
S. E.; Martinborough, E. A. J. Am. Chem. Soc. 1999, 121, 3046. (e)
Denmark, S. E.; Cottel, J. J. AdV. Synth. Catal. 2006, 348, 2397. (f) Padwa,
A. J. Org. Chem. 2009, 74, 6421. (g) Chiacchio, U.; Padwa, A.; Romeo,
G. Curr. Org. Chem. 2009, 13, 422. (h) Davis, F. A.; Yang, B. J. Am.
Chem. Soc. 2005, 127, 8398. (i) Amorde, S. M.; Judd, A. S.; Martin, S. F.
Org. Lett. 2005, 7, 2031.
Figure 3. Synthesis of complex heterocycles. Reaction conditions: (a) Imine
(1 equiv), Ti(Oi-Pr)4 (1.5 equiv), c-C5H9MgCl (3.0 equiv), 8 (1.5 equiv),
Et2O. (b) HCl(aq), THF. (c) Imine (2.0 equiv), Ti(Oi-Pr)4 (2.0 equiv), n-BuLi
(4.0 equiv), 8 (1 equiv), Et2O. (d) Imine (2.0 equiv), Ti(Oi-Pr)4 (3.0 equiv),
c-C5H9MgCl (6.0 equiv), 8 (1 equiv), Et2O.
(3) For recent reviews of the chemistry of allylic silanes, see: (a) Chabaud,
L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173. (b) Masse, C. E.;
Panek, J. S. Chem. ReV. 1995, 95, 1293.
(4) For recent reviews of N-acyliminium ion-based cyclization, see: (a)
Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff,
C. A. Chem. ReV. 2004, 104, 1431. (b) Speckamp, W. N.; Hiemstra, H.
Tetrahedron 1985, 41, 4367.
was possible. As depicted in entry 4, titanium-mediated coupling of
imine 5 with allylic alcohol 12 provides stereodefined allylic silane
13 with very high levels of stereoselectivity.
(5) For examples of cationic cyclization of allylic silanes for the synthesis of
heterocycles, see: (a) Grieco, P. A.; Fobare, W. F. Tetrahedron Lett. 1986,
27, 5067. (b) Hiemstra, H.; Sno, M. H. A. M.; Vijn, R. J.; Speckamp, W. N.
J. Org. Chem. 1985, 50, 4014. (c) Gelas-Mialhe, Y.; Gramain, J.-C.; Hajouji,
H.; Remuson, R. Heterocycles 1992, 34, 37.
With a method for chemoselective allyl transfer in hand, we initiated
studies aimed at application of this transformation to the synthesis of
complex indolizidine and quinolizidine systems (4 f 1). To accomplish
this, our investigations began with the study of the simple aromatic
imine 14 (eq 1 in Figure 3). Gratifyingly, the reductive cross-coupling
reaction with 8 defines an effective means of preparing the stereode-
fined acetal-containing allylsilane 15 (66%; E/Z g 20:1). Acid-
promoted cyclization then proceeds in good yield, delivering the
stereodefined trisubstituted indolizidine 16 (88%, dr g20:1). As
depicted in eq 2 in Figure 3, use of imine 17 in this two-step annulation
process provides a similarly facile and stereoselective pathway to
trisubstituted quinolizidine 19.
(6) (a) Mekhalfia, A.; Marko´, I. E.; Adams, H. Tetrahedron Lett. 1991, 32,
4783. (b) Marko´, I. E.; Bayston, D. J. Tetrahedron Lett. 1993, 34, 6595.
(c) Marko´, I. E.; Dumeunier, R.; Leclercq, C.; Leroy, B.; Plancher, J.-M.;
Mekhalfia, A.; Bayston, D. J. Synthesis 2002, 958. For related reactions,
see: (d) Huang, H.; Panek, J. S. J. Am. Chem. Soc. 2000, 122, 9836. (e)
Roush, W. R.; Dilley, G. J. Synlett 2001, 955. (f) Semeyn, C.; Blaauw,
R. H.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3426.
(7) Yamago, S.; Nakamura, E. Org. React. 2002, 61, 1.
(8) Takahashi, M.; McLaughlin, M.; Micalizio, G. C. Angew. Chem., Int. Ed.
2009, 48, 3648.
(9) For reviews of the use of Ti alkoxides in reductive coupling chemistry,
see: (a) Kulinkovich, O. G.; de Meijere, A. Chem. ReV. 2000, 100, 2789.
(b) Sato, F.; Urabe, H.; Okamoto, S. Chem. ReV. 2000, 100, 2835.
(10) Tarselli, M. A.; Micalizio, G. C. Org. Lett. 2009, 11, 4596.
(11) Daly, J. W.; Garrafo, H. M.; Spande, T. F.; Yeh, H. J. C.; Peltzer, P. M.;
Cacivio, P. M.; Baldo, J. D.; Faivovich, J. Toxicon 2008, 52, 858.
With the application of a recently described procedure for the
coupling of aliphatic imines with allylic alcohols,10 this convergent
heterocycle-forming process can be used to prepare systems containing
JA908504Z
9
J. AM. CHEM. SOC. VOL. 131, NO. 48, 2009 17549