E. S. Kim et al. / Tetrahedron Letters 50 (2009) 6286–6289
6289
Commun. 2007, 8, 2048–2052; (e) Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron
Lett. 2009, 50, 1249–1251; (f) Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem.
Soc. 2006, 27, 140–142; (g) Basavaiah, D.; Lenin, D. V.; Devendar, B. Tetrahedron
Lett. 2009, 50, 3538–3542.
synthesized similarly and the representative spectroscopic data of unknown
compounds (2f, 2h, 2i, 2k, and 2l) are as follows. Known compounds were
identified by their melting points and 1H NMR spectra by comparison with the
reported data, 2a,2a,2c,4a 2b,2b,2c 2c,4a 2d,4a 2e,2a,4a 2g,2a 2j.2bCompound 2f: 70%;
6. (a) Thallaj, N. K.; Przybilla, J.; Welter, R.; Mandon, D. J. Am. Chem. Soc. 2008, 130,
2414–2415; (b) Larock, R. C. Comprehensive Organic Transformations, 2nd ed.;
Wiley-VCH: New York, 1999. p 1988; (c) Kukushkin, V. Y.; Pombeiro, A. J. L.
Chem. Rev. 2002, 102, 1771–1802. and further references cited therein.
7. For the hydration of nitriles to amides catalyzed by acid or base, see: (a)
Moorthy, J. N.; Singhal, N. J. Org. Chem. 2005, 70, 1926–1929. and further
references cited therein; (b) Katritzky, A. R.; Pilarski, B.; Urogdi, L. Synthesis
1989, 949–950; (c) Kopylovich, M. N.; Kukushkin, V. Y.; Haukka, M.; Frausto da
Silva, J. J. R.; Pombeiro, A. J. L. Inorg. Chem. 2002, 41, 4798–4804; (d) Hall, J. H.;
Gisler, M. J. Org. Chem. 1976, 41, 3769–3770; (e) Sharghi, H.; Sarvari, M. H.
Synth. Commun. 2003, 33, 207–212; (f) Berrien, J.-F.; Royer, J.; Husson, H.-P. J.
Org. Chem. 1994, 59, 3769–3774; (g) McIsaac, J. E., Jr.; Ball, R. E.; Behrman, E. J. J.
Org. Chem. 1971, 36, 3048–3050; (h) Merchant, K. J. Tetrahedron Lett. 2000, 41,
3747–3749.
white solid, mp 110–112 °C; IR (film) 3326, 3189, 1668, 1624, 1590 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d2.30 (s, 3H), 4.47 (br s, 1H), 5.41 (s, 1H), 5.44 (s, 1H),
5.91 (s, 1H), 6.06 (br s, 1H), 6.55 (br s, 1H), 7.05–7.22 (m, 4H); 13C NMR (CDCl3,
75 MHz) d 21.44, 74.30, 122.59, 123.21, 126.83, 128.36, 128.55, 138.16, 140.66,
144.46, 169.64; TSIMS m/z 192 (M++1). Anal. Calcd for C11H13NO2: C, 69.09; H,
6.85; N, 7.32. Found: C, 69.13; H, 7.02; N, 7.24.Compound 2h: 70%; white solid,
mp 86–88 °C; IR (KBr) 3376, 3189, 2929, 1655, 1630, 1604 cmÀ1 1H NMR
;
(CDCl3, 300 MHz) d 0.81 (t, J = 6.6 Hz, 3H), 1.22–1.39 (m, 6H), 1.51–1.67 (m,
2H), 3.39 (d, J = 5.4 Hz, 1H), 4.25–4.32 (m, 1H), 5.43 (s, 1H), 5.82 (s, 1H), 5.96
(br s, 1H), 6.68 (br s, 1H); 13C NMR (CDCl3, 75 MHz) d 13.96, 22.52, 25.57, 31.53,
35.59, 73.54, 121.24, 144.73, 169.87; TSIMS m/z 172 (M++1). Anal. Calcd for
C9H17NO2: C, 63.13; H, 10.01; N, 8.18. Found: C, 63.42; H, 10.27; N, 8.03.
Compound 2i: 75%; pale yellow solid, mp 113–115 °C; IR (KBr) 3316, 3179,
2924, 1670, 1592 cmÀ1 1H NMR (DMSO-d6, 300 MHz) d 5.53 (s, 1H), 5.70 (s,
;
8. For the transition metal-catalyzed hydration of nitriles to amides, see: (a) Goto,
A.; Endo, K.; Saito, S. Angew. Chem., Int. Ed. 2008, 47, 3607–3609; (b) Djoman, M.
C. K.-B.; Ajjou, A. N. Tetrahedron Lett. 2000, 41, 4845–4849; (c) Jiang, X.-b.;
Minnaard, A. J.; Feringa, B. L.; de Vries, J. G. J. Org. Chem. 2004, 69, 2327–2331;
(d) North, M.; Parkins, A. W.; Shariff, A. N. Tetrahedron Lett. 2004, 45, 7625–
7627; (e) Fung, W. K.; Huang, X.; Man, M. L.; Ng, S. M.; Hung, M. Y.; Lin, Z.; Lau,
C. P. J. Am. Chem. Soc. 2003, 125, 11539–11544; (f) Oshiki, T.; Yamashita, H.;
Sawada, K.; Utsunomiya, M.; Takahashi, K.; Takai, K. Organometallics 2005, 24,
6287–6290; (g) Yamaguchi, K.; Matsushita, M.; Mizuno, N. Angew. Chem., Int.
Ed. 2004, 43, 1576–1580; (h) Cadierno, V.; Francos, J.; Gimeno, J. Chem. Eur. J.
2008, 6601–6605; (i) Takaya, H.; Yoshida, K.; Isozaki, K.; Terai, H.; Murahashi,
S.-I. Angew. Chem., Int. Ed. 2003, 42, 3302–3304; (j) Breno, K. L.; Pluth, M. D.;
Tyler, D. R. Organometallics 2003, 22, 1203–1211; (k) Kim, J. H.; Britten, J.; Chin,
J. J. Am. Chem. Soc. 1993, 115, 3618–3622; (l) Chin, J.; Kim, J. H. Angew. Chem.,
Int. Ed. 1990, 29, 523–525.
9. Kim, E. S.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 2973–2975.
10. Typical procedure for the conversion of 1a to 2a: A mixture of Baylis–Hillman
adduct 1a (159 mg, 1.0 mmol), acetaldoxime (118 mg, 2.0 mmol), Pd(OAc)2
(22.5 mg, 10 mol %), and PPh3 (52.5 mg, 20 mmol %) in aqueous EtOH (H2O/
EtOH, 1:4, 3 mL) was heated to reflux for 3 h under nitrogen atmosphere. The
reaction mixture was diluted with EtOH (5 mL), filtered through a Celite pad,
and washed with EtOH and CH2Cl2. After the removal of solvent and column
chromatographic purification process (hexanes/EtOAc/CHCl3, 1:1:1) compound
2a was obtained as a white solid, 144 mg (81%). Other compounds were
1H), 5.85 (br s, 1H), 5.87 (s, 1H), 7.01 (br s, 1H), 7.32 (dd, J = 7.8 and 4.8 Hz, 1H),
7.52 (br s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 8.43 (d, J = 4.8 Hz, 1H), 8.50 (s, 1H); 13C
NMR (DMSO-d6, 75 MHz) d 69.12, 117.70, 123.23, 134.29, 138.61, 146.71,
148.21, 148.40, 168.42; ESIMS m/z 179 (M++1). Anal. Calcd for C9H10N2O2: C,
60.66; H, 5.66; N, 15.72. Found: C, 60.54; H, 5.87; N, 15.49.
Compound 2k: 60%; pale yellow solid, mp 181–183 °C; IR (KBr) 3322, 3272,
3199, 1716, 1666, 1621 cmÀ1 1H NMR (DMSO-d6, 300 MHz) d 6.00 (s, 1H), 6.05
;
(s, 1H), 6.23 (s, 1H), 6.74 (d, J = 7.8 Hz, 1H), 6.82 (br s, 1H), 6.85 (td, J = 7.5 and
1.2 Hz, 1H), 6.95 (d, J = 6.6 Hz, 1H), 7.15 (td, J = 7.5 and 1.5 Hz, 1H), 7.58 (br s,
1H), 10.10 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) d 75.67, 109.29, 119.75,
120.87, 123.20, 128.86, 132.38, 143.23, 144.08, 167.57, 177.30; TSIMS m/z 219
(M++1). Anal. Calcd for C11H10N2O3: C, 60.55; H, 4.62; N, 12.84. Found: C, 60.63;
H, 4.76; N, 12.55.Compound 2l: 92%; white solid, mp 128–130 °C; IR (KBr)
3315, 3172, 1711, 1661 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.46 (s, 2H), 3.85 (s,
;
3H), 5.98 (br s, 1H), 6.25 (br s, 1H), 7.34–7.45 (m, 3H), 7.57–7.60 (m, 2H), 7.93
(s, 1H); 13C NMR (CDCl3, 75 MHz) d 35.29, 52.40, 125.58, 128.61, 129.28,
129.60, 134.45, 143.06, 168.64, 172.71; ESIMS m/z 220 (M++1). Anal. Calcd for
C12H13NO3: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.79; H, 6.07; N, 6.15.
11. Although Radha Krishna et al. reported the synthesis of 2i in 62% yield,2e we
could not obtain the compound in any trace amounts under the reported
2b
conditions, very unfortunately. Although they suggested Ref.
as the
2b
reference of compound 2i without spectroscopic data, the authors of Ref.
described that they failed to prepare compound 2i.