N. T. Patil et al. / Tetrahedron Letters 50 (2009) 6576–6579
6579
4. (a) Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233–1246; (b) Trost, B. M. Science
1991, 254, 1471–1477; (c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259–281.
5. (a) Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73–103; (b) Joule, J. A.; Mills,
K. Heterocyclic Chemistry, 4th ed.; Blackwell: Oxford, 2000; (c) Sundberg, R. J.
Indoles; Academic: London, 1996.
6. Reviews: (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911;
(b) Bandini, M.; Melloni, A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199–
1222; (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920.
7. Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358–1373.
8. Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. Chem. Eur. J. 2007, 13, 8285–
8293.
9. Barluenga, J.; Fernández, A.; Rodríguez, F.; Fañanás, F. J. J. Organomet. Chem.
2009, 694, 546–550.
10. (a) Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Reddy, V. V. N. J. Org. Chem. 2009, 74,
6315–6318; (b) Patil, N. T.; Konala, A.; Singh, V.; Reddy, V. V. N. Eur. J. Org.
J = 9.0 Hz, 1H), 3.70 (s, 3H), 3.27 (d, J = 12.5 Hz, 1H) 2.95 (d, J = 12.5 Hz, 1H),
1.50 (s, 3H); 13C NMR (100 MHz, CDCl3): d 147.2, 146.1, 137.5, 128.2, 127.9,
127.2, 127.1, 125.9, 125.8, 125.2, 124.4, 122.8, 121.2, 120.0, 118.7, 109.2, 82.7,
75.9, 56.9, 51.8, 32.6, 30.1; IR (film):
m
max 3019, 2976, 1521, 1476, 1423, 1210,
1046, 928, 769 cmꢁ1
368.2014.
;
HRMS calcd for C26H25NO (M++H) 368.2020, found
15. (a) Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New York,
1962; (b) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107, 1080–
1106.
16. Pale, P.; Chuche, J. Eur. J. Org. Chem. 2000, 1019–1025; Selected examples on
metal catalyzed reactions where Thorpe–Ingold effect was observed, see: (a)
Saito, A.; Oka, Y.; Nozawa, Y.; Hanzawa, Y. Tetrahedron Lett. 2006, 47, 2201–
2204; (b) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett.
2005, 7, 5289–5291; (c) Hanzawa, Y.; Yabe, M.; Oka, Y.; Taguchi, T. Org. Lett.
2002, 4, 4061–4064; (d) Kondo, T.; Okada, T.; Mitsudo, T. J. Am. Chem. Soc. 2002,
124, 186–187.
11. For activation of alkynes by copper salts, see: (a) Zhu, J.; Grigoriadis, N. P.; Lee,
J. P.; Porco, J. A. J. Am. Chem. Soc. 2005, 127, 9342–9343; (b) Patil, N. T.;
Yamamoto, Y. J. Org. Chem. 2004, 69, 5139–5142; (c) Roesch, K. R.; Larock, R. C.
J. Org. Chem. 2002, 67, 86–94; (d) Kundu, N. G.; Nandi, B. J. Org. Chem. 2001, 66,
4563–4575; (e) Chaudhuri, G.; Kundu, N. G. J. Chem. Soc., Perkin Trans. 1 2000,
775–779.
12. One of the reviewers suggested that trace amount of TfOH generated in the
reaction mixture may be responsible for catalyzing the reaction. However, the
reaction between 1a and 2a with 5 mol % TfOH under standard conditions did
not give 3a, clearly indicating that copper salts are necessary to catalyze the
present transformation.
17. For metal catalyzed reactions of terminal alkynes, see: (a) Barluenga, J.;
Dieguez, A.; Fernandez, A.; Rodriguez, F.; Fananas, F. J. Angew. Chem., Int. Ed.
2006, 45, 2091–2093; (b) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.;
Genet, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112–3113; (c) Antoniotti,
S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc. 2005, 127, 9976–9977;
(d) Gu, Y.; Shi, F.; Deng, Y. J. Org. Chem. 2004, 69, 391–394; (e) Lo, M. M.-C.; Fu,
G. C. J. Am. Chem. Soc. 2002, 124, 4572–4573.
18. The catalyst is essential for both catalytic cycles and this has been confirmed
by the following facts; Alkynol 1a did not form 6 without Cu(OTf)2 in toluene at
60 °C when being heated for 3 h. Similarly under the same reaction conditions
6 did not react with 2a without Cu(OTf)2 catalyst.
13. To a toluene (1.5 ml, 0.25 M) solution of 1a (108 mg, 0.46 mmol) and 2a
(50 mg, 0.38 mmol) in 2 ml vial was added Cu(OTf)2 (8 mg, 5 mol %) under
nitrogen atmosphere. The mixture was stirred at 60 °C for 3 h. Then, the
reaction mixture was filtered through a pad of silica gel with ethyl acetate as
an eluent and the solvent was removed under reduced pressure. The residue
was purified by flash silica gel column chromatography using ethyl acetate/
hexane (10:90) as eluent to obtain 3a (137 mg, 98%, based on indole).
14. Characterization data for 3a: Thick liquid, Rf 0.6 (hexane/EtOAc = 80/20); 1H
NMR (300 MHz, CDCl3): d 7.6 (d, J = 7.7 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.28 (t,
J = 7.7 Hz, 2H), 7.21–7.01 (m, 9H), 6.83 (s, 1H), 4.76 (d, J = 9.0 Hz, 1H), 4.24 (d,
19. Selected examples: (a) Pérez, A. G.; López, C. S.; Marco Contelles, J.; Faza, O. N.;
Soriano, E.; de Lera, A. R. J. Org. Chem. 2009, 74, 2982–2991; (b) Xiao, Y.; Zhang,
J. Angew. Chem. Int. Ed. 2008, 47, 1903–1906; (c) Asao, N.; Nogami, T.;
Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764–765.
20. The exocyclic enol ether 6 was prepared by the following procedure: To a
toluene (1.5 ml, 0.28 M) solution of 1a (100 mg, 0.42 mmol) in a 2 ml vial was
added Cu(OTf)2 (7 mg, 5 mol %) under nitrogen atmosphere. The mixture was
stirred at 60 °C for 3 h. Then, the reaction mixture was filtered through a pad of
silica gel with ethyl acetate as an eluent and the solvent was removed under
reduced pressure. The residue was directly used without further purification.