Article
Organometallics, Vol. 28, No. 23, 2009 6799
Scheme 1
The chemistry in Scheme 1 has acquired unanticipated new
urgency since our initial communication. Radical intermedi-
ates pervade C-C bond-forming reactions catalyzed by first-
row metals.26 These radicals are integral to shuttling between
discrete two-electron redox cycles (Fe),27 intermolecular
addition of radicals to olefins (Co),28 and enantioselective
synthesis from racemic substrates (Ni).29 The relationships
between oxidative addition by single-electron transfer,30
atom transfer radical polymerization (ATRP),31 and orga-
nometallic-mediated radical polymerization (OMRP)32 have
been elucidated.33 If rendered reversible, the two equations
in Scheme 1 are the equilibria responsible for ATRP and
OMRP, respectively.
catalytic amounts of cobalt or nickel salts are routinely
added to generate R from less reactive alkyl15 or aryl16
3
R-X substrates, respectively, which then react with Cr(II) to
give the functional-group-tolerant organochromium(III)
complex. Since the development of Nozaki-Hiyama-Kishi
reactions that are catalytic in chromium,17 several different
classes of chiral ligands have been used to perform the
catalytic reaction asymmetrically.18,19
Improvement of all of these catalytic reactions, as well as
the development of new ones, will be achieved through
synthetic paramagnetic organometallic chemistry. In order
to establish structure-activity relationships for the critical
bond-dissociation energies (BDEs) in Scheme 1, improved
general routes to well-defined Cr(II), Cr(III)-X, and Cr-
(III)-R complexes will be required. We previously reported
the use of CpCr[(DppNCMe)2CH] as a radical trap for the
OMRP of vinyl acetate initiated with V-70.34 With the
correct match of alkyl and ancillary ligand steric and elec-
tronic effects to attenuate the Cr(III)-R BDE, a single-
component OMRP reagent can be synthesized.35 The Cr-
(III)-CH3 compounds reported in this paper provide an
excellent baseline for these ongoing studies, due to both the
minimal steric pressure of the methyl ligand and the relative
We previously reported the synthesis of CpCr[(Dpp-
NCMe)2CH], its reaction with iodomethane, and the inde-
pendent synthesis of the corresponding Cr(III) methyl and
iodo complexes.20 We were interested in determining how
reducing the steric bulk of the β-diketiminate ligand would
influence the reactivity of these complexes, in terms of both
the synthesis and relative stability of the Cr(II) and Cr(III)
complexes, as well as for the rate of iodomethane oxidative
addition. Theopold and co-workers pioneered the recent
revival of β-diketiminate ligand structure-activity studies
with the synthesis of well-defined Cr(II) and Cr(III) com-
plexes for catalytic olefin polymerization.21 Related struc-
ture-activity studies involving systematic variation of
β-diketiminate ligands have been reported for applications
ranging from C-H bond22 and dioxygen activation23 to
catalytic copolymerization of CO2 and epoxides24 and olefin
metathesis.25
instability of the CH3 radical.
3
Results and Discussion
(15) Takai, K.; Nitta, K.; Fujimura, O.; Utimoto, K. J. Org. Chem.
1989, 54, 4732–4734.
(16) (a) Jin, H.; Uenishi, J.-I.; Christ, W. J.; Kishi, Y. J. Am. Chem.
Soc. 1986, 108, 5644–5646. (b) Takai, K.; Tagashira, M.; Kuroda, T.;
Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108,
6048–6050.
Synthesis of Chromium(II) Complexes. In our initial com-
munication,20 the Cr(II) complex CpCr[(DppNCMe)2CH],
1a, served as the starting material for the Cr(III) CpCr-
[(DppNCMe)2CH]X complexes via single-electron oxida-
tion reactions.30 Unlike [Cp*Cr(μ-Cl)]2,36 isolable monocy-
clopentadienyl Cr(II) complexes are not accessible from the
direct reaction of NaC5H5 and CrCl2.37 Initially, CpCr-
[(DppNCMe)2CH] was prepared by reacting NaCp with the
Cr(II) bridging-chloro dimer [Cr[(DppNCMe)2CH](μ-Cl)]2
reported by Gibson and co-workers.38
€
(17) Furstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349–12357.
(18) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407–
2424.
(19) Guo, H.; Dong, C.-G.; Kim, D.-S.; Urabe, D.; Wang, J.; Kim,
J. T.; Liu, X.; Sasaki, T.; Kishi, Y. J. Am. Chem. Soc. 2009, 131, 15387–
15393.
(20) Doherty, J. C.; Ballem, K. H. D.; Patrick, B. O.; Smith, K. M.
Organometallics 2004, 23, 1487–1489.
(21) (a) Kim, W.-K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold,
A. L.; Theopold, K. H. Organometallics 1998, 17, 4541–4543.
(b) MacAdams, L. A.; Kim, W.-K.; Liable-Sands, L. M.; Guzei, I. A.;
Rheingold, A. L.; Theopold, K. H. Organometallics 2002, 21, 952–960.
(c) Theopold, K. H.; MacAdams, L. A.; Puttnual, C.; Buffone, G. P.;
Rheingold, A. L. Polym. Mater. Sci. Eng. 2002, 86, 310. (d) MacAdams,
L. A.; Buffone, G. P.; Incarvito, C. D.; Golen, J. A.; Rheingold, A. L.;
Theopold, K. H. Chem. Commun. 2003, 1164–1165. (e) MacAdams, L. A.;
Buffone, G. P.; Incarvito, C. D.; Rheingold, A. L.; Theopold, K. H. J. Am.
Chem. Soc. 2005, 127, 1082–1083. (f) Monillas, W. H.; Yap, G. P. A.;
MacAdams, L. A.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 8090–
8091. (g) Monillas, W. H.; Yap, G. P. A.; Theopold, K. H. Angew. Chem., Int.
Ed. 2007, 46, 6692–6694.
(22) (a) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc.
2003, 125, 15286–15287. (b) Bernskoetter, W. H.; Lobkovsky, E.; Chirik,
P. J. Organometallics 2005, 24, 6250–6259. (c) West, N. M.; Templeton, J. L.
Can. J. Chem. 2009, 87, 288–296. (d) Lin, B.-L.; Bhattacharyya, K. X.;
Labinger, J. A.; Bercaw, J. E. Organometallics 2009, 28, 4400–4405.
(23) (a) Spencer, D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazd-
zewski, B. A.; Duboc-Toia, C.; Le Pape, L.; Yokota, S.; Tachi, Y.; Itoh,
S.; Tolman, W. B. Inorg. Chem. 2002, 41, 6307–6321. (b) Hong, S.; Hill,
L. M. R.; Gupta, A. K.; Naab, B. D.; Gilroy, J. B.; Hicks, R. G.; Cramer, C. J.;
Tolman, W. B. Inorg. Chem. 2009, 48, 4514–4523.
(26) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48,
2656–2670.
€
(27) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.;
Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773–8787.
(28) Affo, W.; Ohmiya, H.; Fujioka, T.; Ikeda, Y.; Nakamura, T.;
Yorimitsu, H.; Oshima, K.; Imamura, Y.; Mizuta, T.; Miyoshi, K.
J. Am. Chem. Soc. 2006, 128, 8068–8077.
(29) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694–6695.
(30) Smith, K. M. Organometallics 2005, 24, 778–784.
(31) Ouchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev., in press
(doi: 10.1021/cr900234b).
(32) Smith, K. M.; McNeil, W. S.; Abd-El-Aziz, A. Macromol. Chem.
Phys., in press (macp.200900581).
(33) Poli, R. Angew. Chem., Int. Ed. 2006, 45, 5058–5070.
(34) Champouret, Y.; Baisch, U.; Poli, R.; Tang, L.; Conway, J. L.;
Smith, K. M. Angew. Chem., Int. Ed. 2008, 47, 6069–6072.
(35) Champouret, Y.; MacLeod, K. C.; Baisch, U.; Patrick, B. O.;
Smith, K. M.; Poli, R. submitted for publication.
(36) Heintz, R. A.; Ostrander, R. L.; Rheingold, A. L.; Theopold, K.
H. J. Am. Chem. Soc. 1994, 116, 11387–11396.
(37) Hermans, P. M. J. A.; Scholten, A. B.; van den Beuken, E. K.;
Bussaard, H. C.; Roeloffsen, A.; Metz, B.; Reijerse, E. J.; Beurskens,
P. T.; Bosman, W. P.; Smits, J. M. M.; Heck, J. Chem. Ber. 1993, 126,
553–563.
(24) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.;
Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738–
8749.
€
(25) Tonzetich, Z. J.; Jiang, A. J.; Schrock, R. R.; Muller, P.
(38) Gibson, V. C.; Newton, C.; Redshaw, C.; Solan, G. A.; White,
Organometallics 2007, 26, 3771–3783.
A. J. P.; Williams, D. J. Eur. J. Inorg. Chem. 2001, 1895–1903.