K. Kaleta et al. / Journal of Organometallic Chemistry 694 (2009) 3800–3805
3805
3H, Ph-CH3), 2.31 (s, 3H, Ph–CH3), 2.09–2.39 (m, 1H, CH2), 2.49–
2.67 (m, 2H, CH2), 2.79 (s, 3H, N–CH3), 2.86–2.97 (m, 1H, CH2),
6.47 (m, 2H, CHPh), 6.95 (m, 2H, CHPh), 7.14 (m, 4H, CHPh); 13C
NMR (50 MHz, THF-d8, 323 K) [ppm]: 20.6 (Ph–CH3), 20.9 (Ph-
CH3), 27.7 (CH3 (tBu)), 29.1 (CH2), 33.2 (CH2), 36.1 (qC (tBu)), 42.2
(N-CH3), 94.1 (spC), 121.0 (CHPh), 128.4 (CHPh), 129.3 (CHPh),
129.5 (CHPh), 131.4 (qCPh), 134.6 (qCPh), 137.5 (qCPh), 143.0 (C@N),
147.3 (qCPh), 153.9 (N@C–tBu), 173.5 (C@O); Anal. Calc. for
C25H30N4O2: C, 71.77; H, 7.18; N, 13.40. Found: C, 70.68; H, 7.22;
N, 13.16%.
m
s(CH2)), 1716 (s,
m
(C@O)), 1624 (s,
m
(C@N)), 1606 (s,
m
(C@C)),
1445 (m, d(CH2)), 1212 (s,
m
as(C–O–C)); 1H NMR (400 MHz, THF-
d8, 323 K) [ppm]: 1.82 (s, 3H, CH3), 2.23 (s, 3H, Ph–CH3), 2.31 (s,
3H, Ph-CH3), 2.14–2.38 (m, 2H, CH2), 2.46–2.52 (m, 1H, CH2),
2.68 (s, 3H, N–CH3), 3.13–3.16 (m, 1H, CH2), 6.57 (m, 2H, CHPh),
6.97 (m, 2H, CHPh), 7.12 (m, 4H, CHPh); 13C NMR (100 MHz, THF-
d8, 323 K) [ppm]: 18.0 (CH3), 20.6 (Ph-CH3), 21.0 (Ph–CH3), 29.1
(CH2), 32.7 (CH2), 41.9 (N–CH3), 94.0 (spC), 119.2 (qCPh), 121.1
(CHPh), 129.0 (CHPh), 129.6 (CHPh), 129.7 (CHPh), 131.5 (qCPh),
134.4 (qCPh), 138.4 (qCPh), 145.9 (C@N), 147.4 (C@N), 173.5
(C@O); Anal. Calc. for C22H24N4O2: C, 70.21; H, 6.38; N, 14.89.
Found: C, 69.84; H, 6.86; N, 14.27%.
3.3.2. MS and spectroscopic data for 3b
MS (DEI): m/z (%) = 452 (84) [M+], 346 (23) [M+-C7H7NH], 320
(16) [C20H22N3O+], 290 (76) [C19H18N2O+], 275 (38) [C18H15N2O+],
262 (50) [C18H18N2+], 247 (18) [C17H15N2+], 163 (14) [C9H11N2O+],
146 (69) [C9H10N2+], 119 (95) [C8H7O+], 107 (70) [C7H7O+], 91
3.3.5. MS and spectroscopic data for 3e
MS (DEI): m/z (%) = 430 (1) [M+], 402 (1) [M+ꢀCO], 335 (2)
[C20H21N3O2+].
(100) [C7H7+]; IR (Nujol, 298 K) [cmꢀ1]: 3035 (w,
(w, as(CH2)), 2856 (w, s(CH2)), 1719 (s,
(C@N)), 1606 (s, (C@C)), 1449 (m, d(CH2)), 1211 (s, m
m
(CHAr)), 2922
(C@O)), 1625 (s,
as(C–O–
m
m
m
Appendix A. Supplementary material
m
m
C)); 1H NMR (400 MHz, THF-d8, 323 K) [ppm]: 2.25, 2.26 (2s, 6H,
Ph-CH3), 2.35 (s, 3H, Ph–CH3), 2.22–3.33 (m, 1H, CH2), 2.64–2.75
(m, 2H, CH2), 2.81 (s, 3H, N-CH3), 3.16–3.25 (m, 1H, CH2), 6.61
(m, 2H, CHPh), 7.03 (m, 6H, CHPh), 7.18 (m, 2H, CHPh), 7.65 (m,
2H, CHPh); 13C NMR (100 MHz, THF-d8, 323 K) [ppm]: 20.6 (Ph-
CH3), 20.9 (Ph-CH3), 21.2 (Ph-CH3), 29.1 (CH2), 32.5 (CH2), 42.5
(N–CH3), 94.2 (spC), 121.1 (CHPh), 126.4 (CHPh), 128.8 (CHPh),
129.0 (qCPh), 129.2 (qCPh), 129.5 (CHPh), 129.6 (CHPh), 129.7 (CHPh),
131.8 (qCPh), 134.3 (qCPh), 138.2 (qCPh), 140.9 (qCPh), 145.1 (C@N–
Ar), 147.2 (C@N–Ar), 173.7 (C@O); Anal. Calc. for C28H29N4O2: C,
74.17; H, 6.40; N, 12.36. Found: C, 73.52; H, 6.54; N, 11.90%.
CCDC 725446, 725447 and 725448 contain the supplementary
crystallographic data for 2a, 2b and 2c in this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
Supplementary data associated with this article can be found, in
References
[1] (a) For recent reviews see: J.A. Varela, C. Saa, Synlett (2008) 2571;
(b) D.K. Rayabarapu, C.-H. Cheng, Acc. Chem. Res. 40 (2007) 971;
(c) B. Heller, M. Hapke, Chem. Soc. Rev. 36 (2007) 1085;
(d) T. Shibata, Adv. Synth. Catal. 348 (2006) 2328;
(e) P.R. Chopade, J. Louie, Adv. Synth. Catal. 348 (2006) 2307;
(f) G. Vasapollo, G. Mele, Curr. Org. Chem. 10 (2006) 1397;
(g) S. Kotha, E. Brahmachary, K. Lahiri, Eur. J. Org. Chem. (2005) 4741;
(h) S. Agarwal, S. Cämmerer, S. Filali, W. Fröhner, J. Knöll, M.P. Krahl, K.R.
Reddy, H.-J. Knölker, Curr. Org. Chem. 9 (2005) 1601;
(i) D. Strübing, M. Beller, in: M. Beller, C. Bolm (Eds.), Transition Metals for
Organic Synthesis, second ed., vol. 1, Wiley-VCH, Weinheim, Germany, 2004, p.
619;
3.3.3. MS and spectroscopic data for 3c
MS (DEI): m/z (%) = 390 (100) [M+], 320 (10) [C20H21N3OH+], 290
(23) [C19H18N2O+], 275 (14) [C18H15N2O+], 262 (15) [C18H18N2+],
247 (6) [C17H15N2+], 217 (31) [C12H15N3O+], 146 (15) [C9H8NO+],
107 (20) [C5H3N2O+], 91 (12) [C7H7+]; IR (Nujol, 298 K) [cmꢀ1]:
3030 (w,
(w, s(CH3)), 1720 (m,
(C@C)), 1450 (m, d(CH2)), 1201 (s,
m
(CHAr)), 2940 (w,
(C@O)), 1633 (s,
as(C–O–C)); 1H NMR
m
as(CH3)), 2925 (w,
mas(CH2)), 2872
m
m
m(C@N)), 1606 (s,
(j) S.E. Gibson, N. Mainolfi, Angew. Chem., Int. Ed. 44 (2005) 3022;
(k) N. Chatani, Chem. Rec. 8 (2008) 201.
m
m
[2] W. Imhof, A. Göbel, R. Beckert, T. Billert, J. Organomet. Chem. 590 (1999) 104.
[3] (a) A. Göbel, W. Imhof, J. Chem. Soc., Chem. Commun. (2001) 593;
(b) A. Göbel, W. Imhof, J. Mol. Catal. A: Chem. 197 (1–2) (2003) 15.
[4] (a) W. Imhof, E. Anders, A. Göbel, H. Görls, Chem. Eur. J. 9 (2003) 1166;
(b) W. Imhof, E. Anders, Chem. Eur. J. 10 (2004) 5717.
[5] J. Fleischhauer, R. Beckert, J. Weston, M. Schmidt, H.J. Flammersheim, H. Görls,
Synthesis (2006) 514.
[6] (a) R. Siebenlist, H.-W. Frühauf, H. Kooijman, N. Veldman, A.L. Spek, K.
Goubitz, J. Fraanje, Inorg. Chim. Acta 327 (2002) 66;
(b) M. DelaVarga, R. Costa, R. Reina, A. Núñez, M.Á. Maestro, J. Mahía, J.
Organomet. Chem. 677 (2003) 101.
[7] (a) F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J.
Chem. Soc., Perkin Trans. 2 (1987) S1;
(400 MHz, THF-d8, 323 K) [ppm]: 1.00 (t, 3H, CH3), 1.13 (t, 3H,
CH3), 2.24 (s, 3H, Ph-CH3), 2.31 (s, 3H, Ph-CH3), 2.14–2.37 (m, 4H,
CH2), 2.46–2.55 (m, 1H, CH2), 2.72 (s, 3H, N–CH3), 3.09 (m, 1H,
CH2), 6.56 (m, 2H, CHPh), 7.00 (m, 4H, CHPh), 7.45 (m, 2H, CHPh);
13C NMR (100 MHz, THF-d8, 323 K) [ppm]: 9.7 (CH3), 10.0 (CH3),
20.6 (Ph-CH3), 21.0 (Ph-CH3), 25.7 (N@C–CH2), 26.0 (N@C–CH2),
29.1 (CH2), 30.5 (CH2), 32.8 (CH2), 42.0 (N–CH3), 94.0 (spC), 119.8
(qCPh), 121.1 (CHPh), 128.9 (CHPh), 129.5 (CHPh), 129.6 (CHPh),
131.5 (qCPh), 134.4 (qCPh), 138.2 (C@N), 138.3 (C@N), 147.4 (qCPh),
149.4 (C@N), 173.5 (C@O); Anal. Calc. for C23H26N4O2: C, 70.77;
H, 6.67; N, 14.36. Found: C, 70.08; H, 6.56; N, 14.06%.
(b) A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J.
Chem. Soc., Dalton Trans. (1989) S1.
[8] M. Hesse, H. Meier, B. Zeh, Spektroskopische Methoden in der organischen
Chemie, fourth ed., Georg Thieme Verlag Stuttgart, New York, 1991.
[9] COLLECT, Data Collection Software; Nonius B.V., Netherlands, 1998.
[10] Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in
oscillation mode, in: C.W. Carter, R.M. Sweet (Eds.), Methods in Enzymology,
Macromolecular Crystallography Part A, vol. 276, Academic Press, 1997, pp.
307–326.
[11] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467–473.
[12] G.M. Sheldrick, SHELXL-97 (Release 97-2), University of Göttingen, Germany,
1997.
3.3.4. MS and spectroscopic data for 3d
MS (DEI): m/z (%) = 376 (17) [M+], 335 (3) [MH+–CO–CH2], 290
(5) [C19H18N2O+], 262 (5) [C18H18N2+], 246 (49) [C13H16N3O2+],
232 (13) [C13H17N3OH+], 203 (19) [C11H13N3O+], 149 (63)
[C9H10NOH+], 133 (32) [C7H7NCO+], 117 (26) [C7H7NC+], 107
(100) [C5H3N2O+], 91 (35) [C7H7+]; IR (Nujol, 298 K) [cmꢀ1]: 3028
(w,
m(CHAr)), 2975 (w, mas(CH3)), 2922 (w, mas(CH2)), 2858 (w,