Table 3 Optical and electrochemical data collected for coloration efficiency measurements of polyamide P2
Cycling timesa
dOD755
Qc/mC cmꢁ2
hd/cm2/C
Decaye/%
b
1
0.734
0.733
0.731
0.730
0.728
0.727
0.726
0.725
0.723
0.721
0.720
1.724
1.724
1.724
1.724
1.723
1.723
1.723
1.722
1.721
1.721
1.721
426
425
424
423
423
422
421
421
420
419
418
0
10
20
30
40
50
60
70
80
90
100
0.23
0.47
0.70
0.70
0.94
1.17
1.17
1.41
1.64
1.88
a
b
c
Switching between 0.00 and 0.90 (V vs. Ag/AgCl). Optical density change at 755 nm. Ejected charge, determined from the in situ experiments.
Coloration efficiency is derived from the equation: h ¼ dOD755/Q. e Decay of coloration efficiency after cyclic scans.
d
M. F. Ge, Z. Bo and Q. B. Meng, Dyes Pigm., 2009, 81, 224; (c)
J. Song, F. Zhang, C. Li, W. Liu, B. Li, Y. Huang and Z. Bo,
J. Phys. Chem. C, 2009, 113, 13391.
9 (a) M. Jikei, R. Mori, S. Kawauchi, M. Kakimoto and Y. Taniguchi,
Polym. J., 2002, 34, 550; (b) Q. He, H. Huang, J. Yang, H. Lin and
F. Bai, J. Mater. Chem., 2003, 13, 1085; (c) B. Li, X. Xu, M. Sun,
Y. Fu, G. Yu, Y. Liu and Z. Bo, Macromolecules, 2006, 39, 456; (d)
R. Zheng, M. Ha1ussler, H. Dong, J. W. Y. Lam and B. Z. Tang,
Macromolecules, 2006, 39, 7973; (e) R. H. Lee, W. S. Chen and
Y. Y. Wang, Thin Solid Films, 2009, 517, 5747.
10 (a) S. Tanaka, T. Iso and Y. Doke, Chem. Commun., 1997, 2063; (b)
F. Wang, M. S. Wilson, R. D. Rauh, P. Schottland,
B. C. Thompson and J. R. Reynolds, Macromolecules, 2000, 33, 2083.
11 (a) M. Irie, Chem. Rev., 2000, 100, 1685; (b) Molecular Switches, ed. B.
L. Feringa, Wiley-VCH, Weinheim, 2001; (c) V. Balzani, A. Credi and
M. Venturi, Molecular Devices and Machines: A Journey into the Nano
World, Wiley-VCH, Weinheim, 2003; (d) H. Tian and S. J. Yang,
Chem. Soc. Rev., 2004, 33, 85; (e) K. D. Belfield, M. V. Bondar,
C. C. Corredor, F. E. Hernandez, O. V. Przhonska and S. Yao,
ChemPhysChem, 2006, 7, 2514; (f) H. Tian and Y. Feng, J. Mater.
Chem., 2008, 18, 1617.
12 (a) P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky,
Electrochromism: Fundamentals and Applications; VCH: Weinheim,
Germany, 1995; (b) D. R. Rosseinsky and R. J. Mortimer, Adv.
Mater., 2001, 13, 783; (c) P. R. Somani and S. Radhakrishnan,
Mater. Chem. Phys., 2003, 77, 117; (d) T. Zhang, S. Liu,
D. G. Kurth and C. F. J. Faul, Adv. Funct. Mater., 2009, 19, 642;
(e) A. Maier, A. R. Rabindranath and B. Tieke, Adv. Mater., 2009,
21, 959.
Conclusion
A series of novel electroactive TPA-based hyperbranched
aromatic polyamides were readily prepared from the phosphory-
lation polyamidation reaction of the newly synthesized A2B
monomer, 4-amino-40,400-dicarboxytiphenylamine, with AB
monomer and end-capping agent, respectively. Because of the
TPA-based hyperbranched structure, these polyamides showed
good solubility and high thermal stability. In addition, the
obtained polymers also revealed valuable electrochromic char-
acteristics such as high contrast in the visible region, high
coloration efficiency, and high-level electrochromic/electroactive
reversibility.
Acknowledgements
The authors are grateful to the National Science Council of the
Republic of China for financial support of this work.
References
1 (a) G. R. Newkome, C. N. Moorefield and F. Vogtle, Dendritic
Molecules: Concepts, Syntheses, Perspectives, VCH: New York,
1996; (b) M. Jikei and M. A. Kakimoto, Prog. Polym. Sci., 2001,
26, 1233; (c) M. Scholl, Z. Kadlecova and H. A. Klok, Prog.
Polym. Sci., 2009, 34, 24; (d) H. Gao and K. Matyjaszewski, Prog.
Polym. Sci., 2009, 34, 317; (e) L. Crespo, G. Sanclimens, M. Pons,
E. Giralt, M. Royo and F. Albericio, Chem. Rev., 2005, 105, 1663;
(f) S. Tanaka, T. Iso, J. Sugiyama, K. Takeuchi and M. Ueda,
Synth. Met., 2005, 154, 125.
13 (a) N. Yamazaki, F. Higashi and J. Kawabata, J. Polym. Sci. Polym.
Chem. Ed., 1974, 12, 2149; (b) N. Yamazaki, M. Matsumoto and
F. Higashi, J Polym. Sci. Polym. Chem. Ed., 1975, 13, 1373.
14 (a) P. E. Cassidy, Thermally Stable Polymers, Marcel Dekker: New
York, 1980; (b) H. H. Yang, Aromatic High-Strength Fibers, Wiley:
New York, 1989.
15 M. Jikei and M. A. Kakimoto, J. Polym. Sci. Part A: Polym. Chem.,
2004, 42, 1293.
16 P. J. Flory, J. Am. Chem. Soc., 1952, 74, 2718.
2 (a) C. Gao and D. Yan, Prog. Polym. Sci., 2004, 29, 183; (b) B. Voit,
J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 2679; (c) C. R. Yates
and W. Hayes, Eur. Polym. J., 2004, 40, 1257.
17 (a) H. R. Kricheldorf and T. Stukenbrock, J. Polym. Sci. Part A:
Polym. Chem., 1998, 36, 2347; (b) J. Li and Z. Bo, Macromolecules,
2004, 37, 2013; (c) M. Sun, J. Li, B. Li, Y. Fu and Z. Bo,
Macromolecules, 2008, 38, 2651.
18 (a) C. W. Chang, G. S. Liou and S. H. Hsiao, J. Mater. Chem., 2007,
17, 1007; (b) G. S. Liou and C. W. Chang, Macromolecules, 2008, 41,
1667; (c) C. W. Chang and G. S. Liou, J. Mater. Chem., 2008, 18,
5638; (d) C. W. Chang, H. J. Yen, K. Y. Huang, J. M. Yeh and
G. S. Liou, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 7937.
19 G. S. Liou and K. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 2009,
47, 1988.
3 (a) C. J. Hawker, R. Lee and J. M. J. Frechet, J. Am. Chem. Soc.,
1991, 113, 4583; (b) Z. Shi, Y. Zhou and D. Yan, Macromol. Rapid
Commun., 2008, 29, 412.
4 (a) X. Chen, Y. Zhang, B. Liu, J. Zhang, H. Wang, W. Zhang,
Q. Chen, S. Peic and Z. Jiang, J. Mater. Chem., 2008, 18, 5019; (b)
Z. Jia, H. Chen, X. Zhu and D. Yan, J. Am. Chem. Soc., 2006, 128,
8144.
€
5 L. Zhi and K. Mullen, J. Mater. Chem., 2008, 18, 1472.
6 D. H. Wang, P. Mirau, B. Li, C. Y. Li, J. B. Baek and L. S. Tan,
Chem. Mater., 2008, 20, 1502.
7 K. L. Wang, S. T. Huang, L. G. Hsieh and G. S. Huang, Polymer,
2008, 49, 4087.
8 (a) P. Taranekar, Q. Qiao, H. Jiang, I. Ghiviriga, K. S. Schanze and
J. R. Reynolds, J. Am. Chem. Soc., 2007, 129, 8958; (b) F. Zhang,
Y. H. Luo, J. S. Song, X. Z. Guo, W. L. Liu, C. P. Ma, Y. Huang,
20 H. J. Yen and G. S. Liou, J. Polym. Sci. Part A: Polym.Chem., 2008,
46, 7354.
21 H. J. Yen and G. S. Liou, Chem. Mater., 2009, DOI: 10.1021/
cm9015222.
This journal is ª The Royal Society of Chemistry 2009
J. Mater. Chem., 2009, 19, 7666–7673 | 7673