O. Vakuliuk, D. T. Gryko
FULL PAPER
N,N-Dimethylamino-2-(3-nitrophenyl)pyrrole (34): Following the ge-
neral procedure, N-dimethylaminopyrrole (690 mL, 6 mmol) was
treated with 1-iodo-3-nitrobenzene (149.4 mg, 0.6 mmol) and
KOAc (235 mg, 2.4 mmol). Purification by column chromatog-
raphy (silica; Et2O/hexanes, 1:9), afforded 34 (crystallized from
Et2O) as fine, yellow crystals (49.9, 36%). Rf = 0.64 (silica; EtOAc/
afforded 39 (crystallized from Et2O/pentane) as fine crystals
(71 mg, 54%). Rf = 0.41 (EtOAc/hexanes, 1:4). M.p. 145–146 °C.
Spectral and physical properties of 39 were found to concur with
published data.[17]
Supporting Information (see footnote on the first page of this arti-
cle): Supporting Information contains ICP-AES for 1-ethyl-3-
1
hexanes, 1:9). M.p. 47 °C. H NMR (400 MHz, CDCl3): δ = 2.84
1
methylimidazolium acetate as well as copies of the H NMR and
(s, 6 H), 6.24 (dd, J = 4.0, 3.2 Hz, 1 H), 6.32 (dd, J = 4.0, 3.2 Hz,
1 H), 7.14 (dd, J = 3.0, 2.0 Hz, 1 H), 7.47 (t, J = 8.0 Hz, 1 H),
7.95, (ddd, J = 8.4, 2.4, 1.2 Hz, 1 H), 8.04 (ddd, J = 8.4, 2.4, 1.2 Hz,
1 H), 8.57 (t, J = 1.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3):
δ = 47.6, 106.4, 107.8, 115.6, 120.6, 122.1, 128.7, 129.4, 131.1,
133.9, 148.2 ppm. HRMS (EI): calcd. for C12H13N3O2 [M]+
231.1007; found 231.1013.
13C NMR spectra for all compounds prepared.
Acknowledgments
The authors thank Marie Curie Research Training Network
REVCAT for financial support (contract number MRTN-CT-2006-
035866) and Eva Nichols (California Institute of Technology) for
amending the manuscript.
1,2,5-Trimethyl-3-(4-nitrophenyl)pyrrole (35): Following the general
procedure, 1,2,5-trimethylpyrrole (690 mL, 6 mmol) was treated
with 1-iodo-4-nitrobenzene (149.4 mg, 0.6 mmol) and KOAc
(235 mg, 2.4 mmol). Purification by column chromatography (sil-
ica; Et2O/hexanes, 1:9) afforded 35 (crystallized from Et2O) as fine,
yellow crystals (24.9 mg, 18%). Rf = 0.44 (silica; EtOAc/hexanes,
[1] For selected examples, see: a) V. F. Slagt, A. H. M. de Vries,
J. G. de Vries, R. M. Kellogg, Org. Process Res. Dev. 2010, 14,
30–47; b) L. Joucla, L. Djakovitch, Adv. Synth. Catal. 2009,
351, 673–714; c) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu,
Angew. Chem. Int. Ed. 2009, 48, 5094–5115; d) T. Satoh, M.
Miura, Chem. Lett. 2007, 36, 200–205; e) J. C. Lewis, R. G.
Bergman, J. A. Ellman, Acc. Chem. Res. 2008, 41, 1013–1025;
f) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107,
174–238; g) L.-C. Campeau, K. Fagnou, Chem. Commun. 2006,
1253–1264; h) L.-C. Campeau, D. R. Stuart, K. Fagnou, Ald-
richimica Acta 2007, 40, 35–41; i) I. V. Seregin, V. Gevorgyan,
Chem. Soc. Rev. 2007, 36, 1173–1193.
[2] For selected examples of Ru, Rh, and Pd catalysis, see: a) J. C.
Lewis, A. M. Berman, R. G. Bergman, J. A. Ellman, J. Am.
Chem. Soc. 2008, 130, 2493–2500; b) S. Yanagisawa, T. Sudo,
R. Noyori, K. Itami, J. Am. Chem. Soc. 2006, 128, 11748–
11749; c) X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc.
2005, 127, 4996–4997; d) N. R. Deprez, D. Kalyani, A. Krause,
M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 4972–4973; e)
G. L. Turner, J. A. Morris, M. F. Greaney, Angew. Chem. 2007,
119, 8142–8146; Angew. Chem. Int. Ed. 2007, 46, 7996–8000; f)
C. Bressy, D. Alberico, M. Lautens, J. Am. Chem. Soc. 2005,
127, 13148–13149; g) T. Okazawa, T. Satoh, M. Miura, M. No-
mura, J. Am. Chem. Soc. 2002, 124, 5286–5286; h) W. Li, D. P.
Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai,
R. D. Larsen, Org. Lett. 2003, 5, 4835–4837; i) T. Martin, C.
Verrier, C. Hoarau, F. Marsais, Org. Lett. 2008, 10, 2909–2912;
j) M. Nakano, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008,
10, 1851–1854; k) J.-X. Wang, J. A. McCubbin, M. Jin, R. S.
Laufer, Y. Mao, A. P. Crew, M. J. Mulvihill, V. Snieckus, Org.
Lett. 2008, 10, 2923–2926; l) D. R. Stuart, K. Fagnou, Science
2007, 316, 1172–1175; m) H. A. Chiong, O. Daugulis, Org.
Lett. 2007, 9, 1449–1451; n) L. Ackermann, A. Althammer, S.
Fenner, Angew. Chem. 2009, 121, 207–210; Angew. Chem. Int.
Ed. 2009, 48, 201–204.
1
1:4). M.p. 110–115 °C (decomp.). H NMR (400 MHz, CDCl3): δ
= 2.26 (s, 3 H), 2.37 (s, 3 H), 3.46 (s, 3 H), 6.06 (s, 1 H), 7.45, 8.18
(AAЈBBЈ, J = 8.8 Hz, 2ϫ2 H) ppm. 13C NMR (100 MHz, CDCl3):
δ = 11.6, 12.3, 30.4, 105.5, 118.6, 123.8, 126.3, 127.4, 128.9, 140.9,
144.6 ppm. HRMS (EI): calcd. for C13H14N2O2 [M]+ 230.1055;
found 230.1051.
1-{[2-(Trimethylsilyl)ethoxy]methyl}-2-(4-cyanophenyl)pyrrole (36):
Following the general procedure, 1-{[2-(trimethylsilyl)ethoxy]-
methyl}pyrrole (1.3 mL, 6 mmol) was treated with 1-cyano-4-iodo-
benzene (137 mg, 0.6 mmol) and KOAc (235 mg, 2.4 mmol). Purifi-
cation by column chromatography (silica; Et2O/hexanes, 5:95) af-
forded 36 as a colorless oil (25 mg, 14%). Rf = 0.45 (EtOAc/hex-
1
anes, 1:4). H NMR (400 MHz, CDCl3): δ = 0.01 (s, 9 H), 0.93 (t,
J = 8.8 Hz, 2 H), 3.58 (dd, J = 8.8, 7.6 Hz, 2 H), 5.22 (s, 2 H), 6.26
(t, J = 2.8 Hz, 1 H), 6.44 (dd, J = 3.6, 1.6 Hz, 1 H), 6.93 (dd, J =
2.8, 1.6 Hz, 1 H), 7.66, 7.70 (AAЈBBЈ, J = 8.8 Hz, 2ϫ2 H) ppm.
13C NMR (100 MHz, CDCl3): δ = –1.4, 17.7, 66.0, 76.2, 109.1,
109.8, 111.7, 119.1, 125.6, 128.4, 132.3, 133.0, 137.2 ppm. HRMS
(EI): calcd. for C17H22N2OSi [M]+ 298.1514; found 298.1493.
2-(4-Nitrophenyl)-1H-pyrrole (37): Following the general procedure,
1-(2-cyanoethyl)pyrrole (680 mL, 6 mmol) was treated with 1-iodo-
4-nitrobenzene (149.4 mg, 0.6 mmol) and KOAc (235 mg,
2.4 mmol). Purification by column chromatography (silica; Et2O/
hexanes, 1:9) afforded 37 (crystallized from CH2Cl2/hexanes) as
fine, orange crystals (45.2 mg, 40%). Rf = 0.54 (silica; EtOAc/hex-
anes, 1:4). M.p. 113–114 °C. 1H NMR (400 MHz, CDCl3): δ = 6.36
(dd, J = 3.8, 2.7 Hz, 1 H), 6.74 (t, J = 3.6 Hz, 1 H), 6.99 (dd, J =
2.8, 1.6 Hz, 1 H), 7.56, 8.21 (AAЈBBЈ, J = 9 Hz, 2ϫ2 H), 8.59 (br.
s, 1 H) ppm. 13C NMR (100 MHz, DMSO): δ = 109.8, 110.3, 122.5,
123.3, 124.3, 129.2, 139.2 144.1 ppm. HRMS (EI): calcd. for
C10H8N2O2 [M]+ 188.0585; found 188.0580.
[3] For selected reviews and articles, see: a) T. Welton, Chem. Rev.
1999, 99, 2071–2084; b) V. I. Parvulescu, C. Hardacre, Chem.
Rev. 2007, 107, 2615–2665; c) M. J. Earle, R. Seldon, Pure Appl.
Chem. 2000, 72, 1391–1398; d) Z. C. Zhang, Adv. Catal. 2006,
49, 153–237; e) H. Xue, R. Verma, J. M. Shreeve, J. Fluorine
Chem. 2006, 127, 159–176; f) S. G. Lee, Chem. Commun. 2006,
10, 1049–1063; g) J. Muzart, Adv. Synth. Catal. 2006, 348, 275–
295; h) Y. R. Jorapur, D. Y. Chi, Bull. Korean Chem. Soc. 2006,
27, 345–354; i) H. W. Sun, Chin. J. Chem. Eng. 2005, 13, 830–
834; j) I. Newington, J. M. Perez-Arlandis, T. Welton, Org.
Lett. 2007, 9, 5247–5250; k) J. M. Sun, S. Fujita, M. Arai, J.
Organomet. Chem. 2005, 690, 3490–3497.
1-H-2-(4-Cyanophenyl)pyrrole (38): Following the general pro-
cedure, pyrrole (413 mL, 6 mmol) was treated with 1-cyano-4-iodo-
benzene (137 mg, 0.6 mmol) and KOAc (235 mg, 2.4 mmol). Purifi-
cation by column chromatography (silica; Et2O/hexanes, 1:9) af-
forded 38 as a yellowish oil (3 mg, 3%). Rf = 0.66 (silica; EtOAc/
hexanes, 1:4). Spectral and physical properties of 38 were found to
concur with published data.[7d]
4-(1-Benzofuran-2-yl)benzonitrile (39): Following the general pro-
cedure, benzofuran (660 mL, 6 mmol) was treated with 1-cyano-4-
iodobenzene (137 mg, 0.6 mmol) and KOAc (235 mg, 2.4 mmol).
Purification by column chromatography (silica; Et2O/hexanes, 1:9)
[4] For selected examples, see: a) D. Q. Xu, Z.-Y. Hu, W.-W. Li,
S.-P. Luo, Z.-Y. Xu, J. Mol. Catal. A 2005, 235, 137–142; b)
C. J. Adams, M. J. Earle, G. Roberts, K. R. Seddon, Chem.
Commun. 1998, 19, 2097–2098; c) T. Fischer, A. Sethi, T. Wel-
2858
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 2854–2859