M. Espinoza-Moraga et al. / Tetrahedron Letters 50 (2009) 7059–7061
7061
Table 2
Microwave-assisted irradiation (90 W) and thermal reduction of imine 2 to 6 by using chloroformates of 8-phenylmenthyl (1a) as chiral auxiliary and PdCl2/Et3SiH as reducing
agent in CH2Cl2
Entry
Imine X (R)
MWA reaction
6, dra (yield %)b
Thermal reaction
6, dra (yield %)b
Time (°C)
Time (°C)
1
2
3
4
5
6
7
8
9
Me, 2a
Et, 2b
iso-Pr, 2c
1-Pentenyl, 2d
Ph, 2e
Bn, 2f
(CH2)2CO2Me, 2g
(CH2)3CO2Me, 2h
(CH2)7CH@CH(CH2)7Me, (Z)-2i
(CH2)7(CH@CHCH2)4(CH2)3Me, (Z,Z)-2j
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
9 min (60 °C)
6a, 5:1 (90%)
6b, 7:1 (85%)
6c, 9:1 (82%)
6d, 11:1 (78%)
6e, 1:1 (65%)
6f, 4:1 (75%)
6g, 5:1 (77%)
6h, 5.5:1 (80%)
6i, 7:1 (89%)
6j, 9:1 (88%)
0.5 (ꢀ78 °C)
1 (ꢀ78 °C)
6a, 6:1 (87%)
6b, 6:1 (87%)
6c, 12:1 (88%)1c
6d, 10:1 (85%)
6e, 1.5:1 (85%)
6f, 3.5:1 (90%)
6g, 5:1 (91%)
6h, 5:1 (89%)
6i, 8:1 (70%)
3 (ꢀ78 °C)
3 h (ꢀ78 °C)
1 h (ꢀ78 °C)
1 h (ꢀ78 °C)
2 h (ꢀ78 °C)
2 h (ꢀ78 °C)
2 h (ꢀ78 °C)
2 h (ꢀ78 °C)
10
6j, 10:1 (75%)
11
9 min (60 °C)
6k, 12:1 (88%)
1 h (ꢀ78 °C)
6k, 13:1 (85%)2b
O
, 2k
a
Diastereomeric ratio (dr) calculated based on HPLC of product 6a–k.
Isolated yields.
b
3233–3236; (b) Ferreri, C.; Costantino, C.; Chatgilialoglu, C.; Boukherroub, R.;
Manuel, G. J. Organomet. Chem. 1998, 554, 135–137; (c) Mirza-Aghayan, M.;
Boukherroub, R.; Bolourtchian, M.; Rahimifard, M. J. Organomet. Chem. 2007,
692, 5113–5116; (d) Mirza-Aghayan, M.; Boukherroub, R.; Rahimifard, M. J.
Organomet. Chem. 2008, 693, 3567–3570; (e) Mirza-Aghayan, M.; Boukherroub,
R.; Rahimifard, M. Tetrahedron Lett. 2009, 50, 5930–5932.
chiral auxiliary induction has been developed. The PdCl2/Et3SiH
protocol is easy to manage, is inexpensive, safe to handle, stable,
and is not pyrophoric, and no inert atmosphere is required. Inter-
estingly, the MWA irradiation reactions presented similar yields
with very short reaction times in contrast to the conventional ther-
mal reactions. The reaction conditions are particularly attractive
and are an example of a green chemistry approach due to perform-
ing reactions in a very short time period by MWA thereby reducing
energy consumption, time savings, and increasing efficiency. If one
compares the energy efficiency of conventional synthesis (heating/
cooling by conduction and convection currents), and microwave-
assisted reactions, it can be noted that for most chemical transfor-
mations a significant energy-saving (up to 80-fold) can be expected
using microwaves as an energy source on a laboratory scale.13
8. All the microwave reactions were performed in CEM Discover LabMate
equipment in a closed vessel (built-in infrared sensor) with cooling system.
9. (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259–281. and references
cited therein; (b) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.
10. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225–
9283.
11. Kappe, C. O.; Dallinger, D. Mol. Div. 2009, 71–193.
12. The NMR spectroscopic data for all compounds are in accordance with
previously described for 4a–k. Optical rotations obtained for majoritary R
compounds are as follows: Compound 4a: ½a D
4b: ½a D +62.0 (c 1.0, MeOH). Compound 4c: ½a D
4d was not previously described: ½a D
ꢁ
+51 (c 1.0, MeOH). Compound
+66 (c 1.0, MeOH). Compound
ꢁ
ꢁ
ꢁ
ꢀ25.0 (c 1.0, CHCl3). FT-IR (KBr film)
cmꢀ1: 3409, 3218, 3062, 2929, 2844, 2744, 1641, 1562, 1452, 1343, 1317,
1288, 1155, 1108, 1002, 909, 744. 1H NMR (400 MHz, CDCl3) d: 1.52–1.70 (3H,
m), 1.84–1.91 (1H, m), 2.09–2.19 (2H, m), 2.68–2.80 (1H, m), 2.75 (1H, dq, J 8.0,
1.9), 3.03 (1H, ddd, J 15.5, 8.0, 5.5), 3.34 (1H, dt, J 14.5, 4.5), 4.07 (1H, br s), 4.98
(1H, br d, J 10.2), 5.03 (1H, dd, J 17.1, 1.6), 5.80 (1H, ddt, J 17.1, 10.2, 6.7), 7.09
(1H, dt, J 7.6, 0.7), 7.14 (1H, dt, J 7.6, 0.7), 7.30 (1H, d, J 7.8), 7,47 (1H, d, J 7.8),
7.84 (1H, br s, NH). 13C NMR (100 MHz, CDCl3) d: 22.6, 25.0, 33.7, 34.3, 42.5,
52.5, 109.0, 110.7, 115.0, 118.0, 119.3, 121.5, 127.5, 135.6, 136.1, 138.3. HRMS,
ESI(+)-MS: m/z calcd for [C16H20N2+H]+: 241.1705, found: 241.1701. Compound
Acknowledgments
FONDECYT (Project 1085308) is great acknowledged for finan-
cial support to Laboratory of Asymmetric Synthesis (LAS). M.E.M.
thanks Programa de Doctorado en Productos Bioactivos-UTalca
for fellowship.
4e: ½a D
4g (tetracyclic lactam obtained after chiral auxiliary removal):3
1.0, CHCl3). Compound 4h (tetracyclic lactam obtained after chiral auxiliary
ꢁ
ꢀ4.0 (c 1.0, CHCl3). Compound 4f: ½a D
ꢁ
ꢀ55.0 (c 1.0, MeOH). Compound
½aꢁD
+240.5 (c
References and notes
removal):3
described: ½a D
½
a D
ꢁ
ꢁ
+260.5 (c 1.0, CHCl3). Compound 4i was not previously
+20.0 (c 1.0, MeOH). 1H NMR (400 MHz, CDCl3) d: 0.90 (3H, t,
1. (a) Whitesell, J. K. Chem. Rev. 1992, 92, 953–964; (b) Blaser, H. U. Chem. Rev.
1992, 92, 835–852; (c) Shankaraiah, N.; da Silva, W. A.; Andrade, C. K. Z.;
Santos, L. S. Tetrahedron Lett. 2008, 49, 4289–4291; (d) Wanner, K. T.; Kartner,
A. Heterocycles 1987, 26, 921–924; (e) D’Oca, M. G. M.; Pilli, R. A.; Vencato, I.
Tetrahedron Lett. 2000, 41, 9709–9712; (f) Shankaraiah, N.; Pilli, R. A.; Santos, L.
S. Tetrahedron Lett. 2008, 49, 5098–5100; (g) de Oliveira, M. C. F.; Santos, L. S.;
Pilli, R. A. Tetrahedron Lett. 2001, 42, 6995–6997; (h) Santos, L. S.; Pilli, R. A. J.
Braz. Chem. Soc. 2003, 14, 982–993.
2. (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069–1094; (b) Shankaraiah,
N.; Santos, L. S. Tetrahedron Lett. 2009, 50, 520–523; (c) Shankaraiah, N.; Santos,
L. S. Tetrahedron Lett. 2009, 50, 2700.
3. da Silva, W. A.; Rodrigues, M. T., Jr.; Shankaraiah, N.; Ferreira, R. B.; Andrade, C.
K. Z.; Pilli, R. A.; Santos, L. S. Org. Lett. 2009, 11, 3238–3241.
J 7.0 Hz), 1.20–1.41 (20H, m), 1.41–1.58 (2H, m), 1.64–1.76 (1H, m), 1.81–1.92
(1H, m), 1.93–2.02 (5H, m), 2.72–2.78 (2H, m), 3.02–3.07 (1H, m), 3.33–3.37
(1H, m), 4.05–4.09 (1H, m), 5.29–5.40 (2H, m), 7.09–7.15 (2H, m), 7.31 (1H, d, J
8.0 Hz), 7.49 (1H, d, J 8.0 Hz), 7.92 (1H, s). 13C NMR (100 MHz, CDCl3) d: 14.1,
22.3, 22.6, 25.8, 27.2, 27.25, 29.2, 29.3, 29.4, 29.5, 29.55, 29.7, 29.8, 29.85, 32.0,
34.9, 42.3, 52.8, 108.7, 110.8, 118.0, 119.4, 121.6, 127.3, 129.7, 130.0, 135.6,
135.70. HRMS, ESI(+)-MS: m/z calcd for [C28H44N2+H]+: 409.3583, found:
409.3578. Compound 4j was not previously described: ½a D
ꢁ
+12.0 (c 1.0, MeOH).
1H NMR (400 MHz, CDCl3) d: 0.88 (3H, t, J 7.0 Hz), 1.26–1.35 (6H, m), 1.52–1.66
(2H, m), 1.71–1.79 (1H, m), 1.86–1.94 (1H, m), 2.03–2.16 (5H, m), 2.75–2.88
(8H, m), 3.05–3.12 (1H, m), 3.34–3.39 (1H, m), 4.18 (1H, br s), 5.31–5.39 (8H,
m), 7.07–7.14 (2H, m), 7.31 (1H, d, J 8.0 Hz), 7.47 (1H, d, J 8.0 Hz), 7.48 (1H, d, J
8.0 Hz), 7.93 (1H, br s). 13C NMR (100 MHz, CDCl3) d: 14.1, 21.8, 22.7, 25.6, 25.7,
25.75, 25.76, 27.1, 27.2, 29.5, 31.5, 34.0, 42.1, 52.6, 108.5, 110.8, 118.1, 119.7,
121.7, 127.3, 127.5, 127.9, 128.1, 128.3, 128.6, 128.7, 129.4, 130.6, 135.7, 136.0.
HRMS, ESI(+)-MS: m/z calcd for [C30H42N2+H]+: 431.3426, found: 431.3430.
4. (a) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870–876; (b) Coleman, R. S.;
Carpenter, A. J. J. Org. Chem. 1992, 57, 5813–5815.
5. Santos, L. S.; Pilli, R. A.; Rawal, V. H. J. Org. Chem. 2004, 69, 1283–1289.
6. (a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 4916–4917; (b) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc.
2000, 122, 1466–1478; (c) Mao, J. M.; Baker, D. C. Org. Lett. 1999, 1, 841–843;
(d) James, B. R. Catal. Today 1997, 37, 209–221.
Compound 4k: ½a D
ꢁ
+23.0 (c 1.0, MeOH).
13. (a) Gronnow, M. J.; White, R. J.; Clark, J. H.; Macquarrie, D. J. Org. Process Res.
Dev. 2005, 9, 516–518; (b) Ondruschka, B.; Bonrath, W.; Stuerga, D. In
Microwaves in Organic Synthesis; Loupy, A., Ed., 2nd ed.; Wiley-VCH: Weinheim,
2006; p 62. Chapter 2.
7. For the other uses of PdCl2/Et3SiH in reduction processes, see: (a) Kunai, A.;
Sakurai, T.; Toyoda, E.; Ishikawa, M.; Yamamoto, Y. Organometallics 1994, 13,