F. Jin et al. / Polyhedron 43 (2012) 1–7
7
[13] C. Jiang, Z.P. Yu, S.J. Wang, C. Jiao, J.M. Li, Z.Y. Wang, Y. Cui, Eur. J. Inorg. Chem.
(2004) 3662.
[14] H. Chun, J. Seo, Inorg. Chem. 48 (2009) 9980.
[15] Y.H. He, Y.L. Feng, Y.Z. Lan, Y.H. Wen, Cryst. Growth Des. 8 (2008) 3586.
[16] Y.Q. Gong, R.H. Wang, D.Q. Yuan, W.P. Su, Y.G. Huang, C.Y. Yue, F.L. Jiang, M.C.
Hong, Polyhedron 26 (2007) 5309.
[17] H.P. Zhou, Y. Xie, Y.P. Tian, Inorg. Chem. Commun. 9 (2006) 351.
[18] Q. Yu, Y.F. Zeng, J.P. Zhao, Q. Yang, X.H. Bu, Cryst. Growth Des. 10 (2010)
1878.
[19] H. Zhang, X.M. Wang, B.K. Teo, Coord. Chem. Rev. 183 (1999) 157.
[20] H. Zhang, D.E. Zelmon, B.K. Teo, Inorg. Chem. 39 (2000) 1868.
[21] J.M. Rivera, H. Reyes, R. Santillan, Chem. Mater. 18 (2006) 1174.
[22] (a) H.K. Liu, W.Y. Sun, D.J. Ma, K.B. Yu, W.X. Tang, Chem. Commun. (2000) 591;
(b) H.F. Zhu, W.Z.T. Okamura, B.L. Fei, W.Y. Sun, N. Ueyama, New J. Chem. 26
(2002) 1277;
3, the transitional metal ions involved are Zn, Hg and Mn ions,
where the coordination geometries of Zn, Hg and Mn ions are tet-
rahedral N4, N2S2 and octahedral N6, respectively. The different
weak non-covalent forces are generated in the three structures be-
cause of the different coordination modes of Zn, Hg and Mn ions.
Higher-dimensional supramolecular structures are formed through
the weak non-covalent forces. The results show that the metal ions
and weak non-covalent forces play important roles in the construc-
tion of complex supramolecular structures.
Acknowledgments
(c) J. Xia, Y. Xu, S.A. Li, W.Y. Sun, K.B. Yu, W.X. Tang, Inorg. Chem. 40 (2001)
2394;
(d) J. Fan, H.F. Zhu, T. Okamura, W.Y. Sun, W.X. Tang, N. Ueyama, Inorg. Chem.
42 (2003) 158;
(e) R.G. Xiong, J.L. Zuo, X.Z. You, Inorg. Chem. 36 (1997) 2472;
(f) Y.W. Li, H. Ma, Y.Q. Chen, K.H. He, Z.X. Li, X.H. Bu, Cryst. Growth Des. 12
(2012) 189.
This work was supported by Program for New Century Excellent
Talents in University (China), Doctoral Program Foundation of -
Ministry of Education of China (20113401110004), Science and
Technological Fund of Anhui Province for Outstanding Youth
(10040606Y22), National Natural Science Foundation of China
(21071001), Natural Science Foundation of Education Committee
of Anhui Province (KJ2012A024), the 211 Project of Anhui Univer-
sity, the Team for Scientific Innovation Foundation of Anhui Prov-
ince (2006KJ007TD), Ministry of Education Funded Projects Focus
on Returned Overseas Scholar, and Anhui University Student Inno-
vative Experiment Plan (XJ103575023, KYXL201100337).
[23] (a) Y.F. Yue, E.Q. Gao, C.J. Fang, T. Zheng, J. Liang, C.H. Yan, Cryst. Growth Des. 8
(2008) 3295;
(b) H.L. Sun, B.Q. Ma, S. Gao, S.R. Batten, Cryst. Growth Des. 5 (2005) 1331;
(c) H.L. Sun, S. Gao, B.Q. Ma, G. Su, S.R. Batten, Cryst. Growth Des. 5 (2005)
269;
(d) D.F. Li, S. Gao, L.M. Zheng, W.Y. Sun, T. Okamura, N. Ueyamac, W.X. Tang,
New J. Chem. 26 (2002) 485;
(e) B.L. Fei, W.Y. Sun, Y.A. Zhang, K.B. Yu, W.X. Tang, J. Chem. Soc., Dalton
Trans. (2000) 2345;
(f) H.R. Wen, C.F. Wang, Y. Song, J.L. Zuo, X.Z. You, Inorg. Chem. 44 (2005)
9039;
Appendix A. Supplementary data
(g) J. Fan, L. Gan, H. Kawaguchi, W.Y. Sun, K.B. Yu, W.X. Tang, Chem. Eur. J. 9
(2003) 3965.
CCDC 832300, 831607, and 831608 contains the supplementary
crystallographic data for 1, 2, and 3, respectively. These data can be
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-
033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data asso-
ciated with this article can be found, in the online version, at
[24] (a) H.P. Zhou, Y.P. Tian, J.Y. Wu, J.Z. Zhang, D.M. Li, Y.M. Zhu, Z.J. Hu, X.T. Tao,
M.H. Jiang, Y. Xie, Eur. J. Inorg. Chem. (2005) 4976;
(b) H.P. Zhou, J.H. Yin, L.X. Zheng, P. Wang, F.Y. Hao, W.Q. Geng, X.P. Gan, G.Y.
Xu, J.Y. Wu, Y.P. Tian, X.T. Tao, M.H. Jiang, Y.H. Kan, Cryst. Growth Des. 9 (2009)
3789;
(c) H.P. Zhou, P. Wang, L.X. Zheng, W.Q. Geng, J.H. Yin, X.P. Gan, G.Y. Xu, J.Y.
Wu, Y.P. Tian, Y.H. Kan, X.T. Tao, M.H. Jiang, J. Phys. Chem. A 113 (2009)
2584;
(d) H.P. Zhou, X.P. Gan, X.L. Li, Z.D. Liu, W.Q. Geng, F.X. Zhou, W.Z. Ke, P.
Wang, L. Kong, F.Y. Hao, J.Y. Wu, Y.P. Tian, Cryst. Growth Des. 10 (2010)
1767.
[25] F. Jin, H.P. Zhou, X.C. Wang, Z.J. Hu, J.Y. Wu, J.X. Yang, Y.P. Tian, M.H. Jiang,
Polyhedron 26 (2007) 1338.
References
[26] G.M. Sheldrick, SHELXTL V.51 Software Reference Manual, Bruker AXS, Inc.,
[1] C.Q. Wan, T.C.W. Mak, Cryst. Growth Des. 11 (2011) 832.
[2] D. Singh, J.B. Baruah, Cryst. Growth Des. 11 (2011) 768.
[3] E. Yang, J. Zhang, Y.G. Yao, Inorg. Chem. 43 (2004) 6525.
[4] L. Han, H. Valle, X.H. Bu, Inorg. Chem. 46 (2007) 1511.
[5] H.K. Liu, W.Y. Sun, W.X. Tang, J. Chem. Soc., Dalton Trans. (2002) 3886.
[6] E.Y. Cheung, K. Fujii, F. Guo, K.D.M. Harris, S. Hasebe, R. Kuroda, Cryst. Growth
Des. 3 (2011) 3313.
[7] A.P.S. Pannu, P. Kapoor, R. Kapoor, Polyhedron 30 (2011) 1691.
[8] X.L. Wang, J. Li, A.X. Tian, D. Zhao, G.C. Liu, H.Y. Lin, Cryst. Growth Des. 31
(2011) 3456.
[9] X.W. Wang, J.Z. Chen, J.H. Liu, Cryst. Growth Des. 7 (2007) 1227.
[10] J. Luo, T. Lei, Y.G. Ma, J. Am. Chem. Soc. 131 (2009) 2076.
[11] T. Honda, T. Nakanishi, Kei Ohkubo, J. Am. Chem. Soc. 132 (2010) 10155.
[12] Z. Su, J. Fan, T. Okamura, M.S. Chen, S.S. Chen, W.Y. Sun, N. Ueyama, Cryst.
Growth Des. 10 (2010) 1911.
Madison, Wisconsin, USA, 1997.
´
[27] B. Machura, J. Palion, A. Switlicka, J. Mrozin´ ski, R. Kruszynski, Polyhedron 30
(2011) 2499.
[28] D. Capsoni, M. Bini, V. Massarotti, P. Mustarelli, G. Chiodelli, C.B. Azzoni, M.C.
Mozzati, L. Linati, S. Ferrari, Chem. Mater. 20 (2008) 4291.
[29] G.L. Abbati, A. Cornia, A.C. Fabretti, A. Caneschi, D. Gatteschi, Inorg. Chem. 37
(1998) 3759.
[30] D. Capsoni, M. Bini, S. Ferrari, P. Mustarelli, V. Massarotti, M.C. Mozzati, A.
Spinella, J. Phys. Chem. 114 (2010) 13872.
[31] G. Pintacuda, M. John, X.C. Su, G. Otting, Acc. Chem. Res. 40 (2007) 206.
[32] M. John, A.Y. Park, G. Pintacuda, N.E. Dixon, G. Otting, J. Am. Chem. Soc. 127
(2005) 17190.
[33] C.P. Grey, N. Duprè, Chem. Rev. 104 (2004) 4493.