Phosphorylation of glycosylamines
Russ.Chem.Bull., Int.Ed., Vol. 57, No. 9, September, 2008
2025
3
4.08 (d, 2 H, C(6)H, C(6)H´, JH,H(5) = 4.9 Hz); 4.43 (m, 1 H,
Phosphine oxides 6a,d and 8a,b (general procedure). A soluꢀ
tion of compound 5a—d, 6a,b (1 mmol) and Ph2POH (1 mmol)
in chloroform (5 mL) was kept for 3—4 h at 25 °C under argon
followed by concentration in vacuo, the residue was chromatoꢀ
graphed.
3
3
C(5)H, JH,H(4) = 8.2 Hz, JH,H(6, 6´) = 4.9 Hz); 4.68 (m, 1 H,
C(2)H, JH,H(3) = 5.8 Hz, JH,H(1) = 3.7 Hz); 4.78 (m, 1 H,
C(3)H, JH,H(2) = 5.8 Hz, JH,H(4) = 3.2 Hz); 4.89 (m, 1 H,
C(1)H, 3JH,H(2) = 3.7 Hz); aglycone, 2.24 (s, 3 H, Me); 6.70 (d, 2 H,
C(3)H, C(5)H, JH,H = 8.4 Hz); 7.01 (d, 2 H, C(2)H, C(6)H,
3
3
3
3
3
1ꢀCꢀDiphenylphosphorylꢀ1ꢀdeoxyꢀ1ꢀ(pꢀtoluidino)ꢀ2,3,4ꢀtriꢀ
OꢀacetylꢀDꢀxylitol (6a), Rf 0.2, [α]D –5.5. 31P NMR, δ: 30.1
(52%), 33.5 (48%). 13C NMR, δ: carbohydrate fragment,
3JH,H = 8.4 Hz).
Nꢀ(2,3;5,6ꢀDiꢀOꢀisopropylideneꢀβꢀDꢀmannofuranosyl)ꢀpꢀ
anisidine (7b). The yield was 2.74 g (75.2%), m.p. 154—156 °C,
Rf 0.63, [α]D –98.4. Found (%): C, 61.88; H, 7.15; N, 3.52.
C19H27NO6. Calculated (%): C, 62.45; H, 7.45; N, 3.83.
1H NMR, δ: carbohydrate part, 1.38, 1.41, 1.46, 1.55 (4 s, 4×3 H,
Me); 3.51 (dd, 1 H, C(4)H, 3JH,H(3) = 3.2 Hz, 3JH,H(5) = 7.9 Hz);
1
20.0—20.6 (m, 3 H3C—C(O)); 58.0 (d, C(1), JC,P = 80.6 Hz);
62.5 (s, C(5)); 69.0 (s, C(4)); 71.2 (s, C(2)); 77.0 (d, C(3),
3JC,P = 32.2 Hz); 170.2 (m, —C(O)—CH3); toluidine fragment,
24.3 (s, Me); 113.5 (s, C(2), C(6)); 117.0 (s, C(4)); 128.6 (s, C(3),
C(5)); 146.0 (s, C(1)); phosphoryl fragment, 128.1—128.5
(m, 2 C(3), 2 C(5)); 129.7—132.2 (m, 2 C(1), 2 C(4), 2 C(2),
2 C(6)). 1H NMR, δ: carbohydrate fragment, 1.85—2.08 (m,
C(O)Me); 3.37 (m, C(5)H); 3.88 (m, C(5´)H); [3.80 (m, C(5)H);
4.13 (m, (5´)H)]*; 4.42 (br.s, OH [OH]); 4.85 (m, C(2)H,
3
4.09 (d, 2 H, C(6)H, C(6)H´, JH,H(5) = 4.8 Hz); 4.44 (m, 1 H,
C(5)H, 3JH(5),H(4) = 7.9 Hz, 3JH(5),H(6,6´) = 4.8 Hz); 4.68 (m, 1 H,
3
3
C(2)H, JH,H(3) = 5.5 Hz, JH,H(1) = 3.4 Hz); 4.78 (m, 1 H,
C(3)H, JH,H(2) = 5.5 Hz, JH,H(4) = 3.2 Hz); 4.89 (m, 1 H,
C(1)H, JH,H(2) = 3.4 Hz); aglycone, 3.75 (s, 3 H, OMe); 6.75
(d, 2 H, C(3)H, C(5)H, JH,H = 9.2 Hz); 6.78 (d, 2 H, C(2)H,
3
3
3
3
[C(2)H], JH,H(1) = 3.3 Hz); 4.97 (m, C(4)H [C(4)H]); 5.39
3
3
(m, C(3)H, [C(3)H)]); 5.23 (m, C(1)H, JH,H(2) = 3.3 Hz,
C(6)H, 3JH,H = 9.2 Hz).
2JH,P = 8.8 Hz); [5.52 (m, C(1)H, JH,H(2) = 3.3 Hz, JH,P
=
3
2
Synthesis of phosphine oxides 3 (4) (general procedure).
A solution of the corresponding derivative of Dꢀxylose (1a, 2a) or
Dꢀlyxose (1b, 2b) (1 mmol) and Ph2POH (1 mmol) in DMF
(2 mL) was kept under argon for 2—3 h at 25 °C followed by
addition of ethanol (10 mL). After ~14 h, the white precipitate
that formed was filtered off, washed with ethanol and diethyl
ether, and dried in vacuo.
= 8.0 Hz)]; toluidine fragment, 2.17 (s, Me); [2.19 (s, Me)]; 5.09
(br.s, NH, [NH]); 6.37 (d, C(3)H, C(5)H, 3JH,H = 8.4 Hz); 6.52
3
(d, C(2)H, C(6)H, JH,H = 8.4 Hz); [6.45 (d, C(3)H, C(5)H,
3
3JH,H = 8.4 Hz); 6.87 (d, C(2)H, C(6)H, JH,H = 8.4 Hz)];
phosphoryl fragment, 7.40 (m, 2 C(3)H, 2 C(4)H, 2 C(5)H);
[7.60 (m, 2 C(3)H, 2 C(4)H, 2 C(5)H)]; 7.80 (m, C(2)H, C(6)H,
[C(2)H, 2 C(6)H], 3JH,P = 11.6 Hz), 8.00 (m, C(2´)H, C(6´)H,
[C(2´)H, C(6´)H], 3JH,P = 11.6 Hz).
Nꢀ[(Diphenylphosphoryl)(2ꢀfuryl)methyl]ꢀpꢀtoluidine (3),
[α]D +15.3. 31P NMR, δ: 29.0. 13C NMR, δ: 51.3 (d, N—CH—P,
1JC,P = 82.4 Hz); furan fragment, 109.7 (d, C(3), 3JC,P = 5.2 Hz);
110.5 (s, C(4)); 142.4 (s, C(5)); 149.7 (s, C(2)); toluidine fragꢀ
ment, 24.3 (s, Me); 113.4 (s, C(3), C(5)); 116.3 (s, C(2), C(6));
1ꢀCꢀDiphenylphosphorylꢀ1ꢀdeoxyꢀ1ꢀ(pꢀtoluidino)ꢀ2,3,4,6ꢀ
tetraꢀOꢀacetylꢀDꢀglucitol (6b), Rf 0.25, [α]D –4.6. 31P NMR,
δ: 27.6. 13C NMR, δ: carbohydrate fragment, 20.8—21.2
1
(m, 4 H3C—C(O)); 58.9 (d, C(1), JC,P = 78.6 Hz); 61.7
3
129.8 (s, C(4)); 144.6 (d, C(1), JC,P = 10.3 Hz); phosphoryl
(s, C(6)); 68.0 (s, C(4)); 69.8 (s, C(2)); 70.8 (s, C(5)); 71.0 (s, C(3));
170.2 (m, —C(O)—CH3); toluidine fragment, 24.3 (s, Me); 113.5
(s, C(2), C(6)); 117.4 (s, C(4)); 128.6 (s, C(3), C(5)); 146.4
(s, C(1)); phosphoryl fragment, 128.4—128.5 (m, 2 C(3), 2 C(5));
fragment, 128.5—129.4 (m, 2 C(3), 2 C(5)); 131.7—132.6 (m, 2 C(1),
2 C(4), 2 C(2), 2 C(6)). 1H NMR, δ: 5.74 (dd, 1 H, NH,
3
3JH,CH = 11.3 Hz, JH,P = 3.7 Hz); 5.95 (dd, 1 H, N—CH—P,
3JH,H = 11.3 Hz, 2JH,P = 11.7 Hz); furan fragment, 6.20 (m, 1 H,
C(4)H, 3JH,H(3) = 3.30 Hz); 6.28 (m, 1 H, C(3)H, 3JH,H(4) = 3.3 Hz,
4JH,CHP = 2.9 Hz); 7.35 (br.s, 1 H, C(5)H); toluidine fragment,
2.10 (s, 3 H, Me); 6.82 (s, 4 H, C(3)H, C(5)H, C(2)H, C(6)H);
diphenylphosphoryl fragment, 7.45—7.51 (m, 6 H, 2 C(3)H,
2 C(4)H, 2 C(5)H); 7.79 (t, 2 H, C(2)H, C(6)H, 3JH,P = 11.0 Hz);
7.97 (t, 2 H, C(2´)H, C(6´)H, 3JH,P = 11.0 Hz).
129.7—132.1 (m, 2 C(1), 2 C(4), 2 C(2), 2 C(6)). H NMR, δ:
1
carbohydrate fragment, 1.98—2.07 (m, C(O)CH3); 4.08
(m, C(6)H, [C(6)H], C(6´)H, [C(6´)H]); 4.27 (m, C(5)H); [4.31
(m, C(5)H)]; 4.73 (m, C(4)H, [C(4)H]); 5.09 (m, C(3)H,
[C(3)H]); 5.36 (m, C(2)H, 3JH,H(1) = 5.1 Hz); [5.47 (m, C(2)H,
3
2
3JH,H(1) = 5.1 Hz)]; 5.70 (m, C(1)H, JH,H(2) = 1.6 Hz, JH,P
=
= 9.2 Hz); [5.87 (m, C(1)H, 3JH,H(2) = 1.6 Hz, 2JH,P = 9.2 Hz)];
toluidine fragment, 2.18 (s, Me); [2.25 (s, Me)]; 6.61 (d, C(3)H,
C(5)H, 3JH,H = 8.1 Hz); [6.77 (d, C(3)H, C(5)H, 3JH,H = 8.1 Hz)];
7.00 (d, C(2)H, C(6)H, JH,H = 8.1 Hz); [7.02 (d, C(2)H,
C(6)H), 3JH,H = 8.1 Hz]; phosphoryl fragment, 7.35 (m, 2 C(3)H,
Nꢀ[(Diphenylphosphoryl)(2ꢀfuryl)methyl]ꢀpꢀanisidine (4),
[α]D +10.6. 31P NMR, δ: 28.9. 13C NMR, δ: 59.3 (d, N—CH—P,
1JC,P = 82.6 Hz); furan fragment, 106.7 (d, C(3), 3JC,P = 5.2 Hz);
110.6 (s, C(4)); 142.1 (s, C(5)); 152.5 (s, C(2)); anisidine fragꢀ
ment, 55.2 (s, CH3), 114.1 (s, C(3), C(5)); 115.3 (s, C(2), C(6));
3
2 C(4)H, 2 C(5)H); [7.50 (m, 2 C(3)H, 2 C(4)H, 2 C(5)H)]; 7.90
3
3
128.6 (s, C(4)); 140.8 (d, C(1), JC,P = 10.5 Hz); phosphoryl
(m, C(2)H, C(6)H, [C(2)H, C(6)H], JH,P = 11.0 Hz); 8.05
fragment, 128.0—128.4 (m, 2 C(3), 2 C(5)); 130.8—131.5 (m, 2 C(1),
(m, C(2´)H, C(6´)H, [C(2´)H, C(6´)H], 3JH,P = 11.0 Hz).
1ꢀCꢀDiphenylphosphorylꢀ1ꢀdeoxyꢀ1ꢀ(pꢀanisidino)ꢀ2,3,4ꢀtriꢀ
OꢀacetylꢀDꢀxylitol (6c), Rf 0.3, [α]D –6.2. 31P NMR, δ: 30.7
(42%), 32.6 (58%). 13C NMR, δ: carbohydrate fragment,
2 C(4), 2 C(2), 2 C(6)). 1H NMR, δ: 5.56 (dd, 1 H, NH,
3
3JH,CH = 11.1 Hz, JH,P = 3.8 Hz); 5.90 (dd, 1 H, N—CH—P,
3JH,NH = 11.1 Hz, 2JH,P = 11.6 Hz); furan fragment, 6.21 (m, 1 H,
3
4
1
C(4)H, JH,H(3) = 3.2 Hz, JH,H(5) = 1.8 Hz); 6.30 (m, 1 H,
21.8—22.2 (m, 3 H3C—C(O)); 58.0 (d, C(1), JC,P = 80.6 Hz);
3
4
C(3)H, JH,H(4) = 3.2 Hz, JH,CHP = 2.4 Hz); 7.35 (m, 1 H,
62.5 (s, C(5)); 68.1 (s, C(4)); 69.3 (s, C(2)); 73.8 (d, C(3),
3JC,P = 34.4 Hz); 170.2 (m, —C(O)—CH3); anisidine fragment,
55.8 (s, OCH3); 113.8 (s, C(2), C(6)); 117.4 (s, C(4)); 128.8
(s, C(3), C(5)); 146.6 (s, C(1)); phosphoryl fragment, 128.3—128.7
4
C(5)H, JH,H(3) = 1.8 Hz); anisidine fragment, 3.60 (s, 3 H,
OMe); 6.64 (d, 2 H, C(3)H, C(5)H 3JH,H = 8.6 Hz); 6.86 (d, 2 H,
C(2)H, C(6)H, 3JH,H = 8.6 Hz); phosphoryl fragment, 7.43—7.53
(m, 6 H, 2 C(3)H, 2 C(4)H, 2 C(5)H); 7.78 (t, 2 H, C(2)H, C(6)H,
3JH,P = 10.7 Hz); 7.98 (t, 2 H, C(2´)H, C(6´), 3JH,P = 11.0 Hz).
* Chemical shifts and spinꢀspin coupling constants for the secꢀ
ond diastereomer are given in square brackets.