ORGANIC
LETTERS
2009
Vol. 11, No. 24
5630-5633
Regiospecific Decarboxylative Allylation
of Nitriles
Antonio Recio III and Jon A. Tunge*
Department of Chemistry, The UniVersity of Kansas, Lawrence, Kansas 66045
Received September 5, 2009
ABSTRACT
Palladium-catalyzed decarboxylative r-allylation of nitriles readily occurs with use of Pd2(dba)3 and rac-BINAP. This catalyst mixture also
allows the highly regiospecific r-allylation of nitriles in the presence of much more acidic r-protons. Thus, the reported method provides
access to compounds that are not readily available via base-mediated allylation chemistries. Lastly, mechanistic investigations indicate that
there is a competition between C- and N-allylation of an intermediate nitrile-stabilized anion and that N-allylation is followed by a rapid [3,3]-
sigmatropic rearrangement.
Decarboxylative allylation reactions are a powerful method
for the allylation of a wide variety of nucleophiles under
neutral conditions.1-3 While the decarboxylative allylation
of enolates has received the most attention, relatively little
attention has been paid to nitrogen-containing carbon nu-
cleophiles.2,3 Given the prevalence of nitrogen in biologically
active molecules, we are interested in extending decarboxy-
lative couplings to allow facile incorporation of nitrogen. In
Tsuji’s pioneering work on decarboxylative allylation, he
showed that R-allylation of a nitrile could occur at 100 °C
in dioxane, albeit with substantial amounts of undesirable
decarboxylative protonation.3a That said, Tsuji provided the
proof-of-principle that we have chosen to build upon to
develop milder, regiospecific allylation of nitriles that we
report herein.
The work of Tsuji,3a Saegusa,3b Darensbourg,4 and
Shibasaki3d has shown that the decarboxylation of R-cyano
acetates can provide access to metalated nitriles5 without
the need for strongly basic reagents. We posited that the
absence of basic proton shuttles would allow us to generate
nitrile-stabilized carbanions regiospecifically in the pres-
ence of more acidic functional groups.6 Before we could
approach that problem it was critical that we optimize the
reaction conditions to promote allylation and prevent
unwanted protonation. Toward this end, a variety of
catalyst/ligand combinations were evaluated for their
(1) (a) Shimizu, I.; Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 3199.
(b) Rayabarapu, D. K.; Tunge, J. A. J. Am. Chem. Soc. 2005, 127, 13510.
(c) Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 4138. (d)
Weaver, J. D.; Tunge, J. A. Org. Lett. 2008, 10, 4657. (e) Mohr, J. T.;
Behenna, D. C.; Harned, A. W.; Stoltz, B. M. Angew. Chem., Int. Ed. 2005,
44, 6924. (f) Trost, B. M.; Bream, R. N.; Xu, J. Angew. Chem., Int. Ed.
2006, 45, 3109. (g) Singh, O. V.; Han, H. J. Am. Chem. Soc. 2007, 129,
(4) (a) Darensbourg, D. J.; Longridge, E. M.; Holtcamp, M. W.;
Klausmeyer, K. K.; Reibenspies, J. H. J. Am. Chem. Soc. 1993, 115, 8839.
(b) Darensbourg, D. J.; Longridge, E. M.; Holtcamp, M. W.; Khandelwal,
B.; Klausmeyer, K. K.; Reibenspies, J. H. J. Am. Chem. Soc. 1995, 117,
318. (c) Pletnev, A.; Larock, R. C. J. Org. Chem. 2002, 67, 9438.
(5) (a) Fleming, F. F.; Zhang, Z.; Liu, W.; Knochel, P. J. Org. Chem.
2005, 70, 2200. (b) Okugawa, S.; Masu, H.; Yamaguchi, K.; Takeda, K. J.
Org. Chem. 2005, 70, 10515. (c) Fleming, F. F.; Liu, W.; Ghosh, S.;
Steward, O. W. Angew. Chem., Int. Ed. 2007, 46, 7098. (d) Yasui, H.;
Yorimtsu, H.; Oshima, K. Chem. Lett. 2007, 36, 32. (e) Gaudin, J.; Millet,
P. Chem. Commun. 2008, 588. (f) Fleming, F. F.; Liu, W.; Ghosh, S.;
Steward, O. W. J. Org. Chem. 2008, 73, 2803.
774. (h) Wang, C.; Tunge, J. A. J. Am. Chem. Soc. 2008, 130, 8118
.
(2) (a) Burger, E. C.; Tunge, J. A. J. Am. Chem. Soc. 2006, 128, 10002.
(b) Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879. (c) Bi, H.;
Chen, W.; Liang, Y.; Li, C. Org. Lett. 2009, 11, 3246
.
(3) For decarboxylative couplings of nitrile-stabilized anions see: (a)
Tsuji, J.; Yamada, T.; Minami, I.; Yuhara, M.; Nisar, M.; Shimizu, I. J.
Org. Chem. 1987, 52, 2988. (b) Tsuda, T.; Chujo, Y.; Nishi, S.-i.; Tawara,
K.; Saegusa, T. J. Am. Chem. Soc. 1980, 102, 6381. (c) Waetzig, S. R.;
Rayabarapu, D. K.; Weaver, J. D.; Tunge, J. A. Angew. Chem., Int. Ed.
2006, 45, 4977. (d) Yin, L.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
(6) (a) Darvesh, S.; Grant, A. S.; MaGee, D. I.; Valenta, Z. Can. J. Chem.
1991, 69, 712.
2009, 131, 9610
.
10.1021/ol902065p 2009 American Chemical Society
Published on Web 11/18/2009