Synthesis, 1999, 783; (d) A. N. Cuzzupe, C. A. Hutton, M. J. Lilly,
R. K. Mann, K. J. McRae, S. Zammit and M. A. Rizzacasa,
J. Org. Chem., 2001, 66, 2382; (e) M. El Sous, D. Ganame,
P. A. Treggloan and M. A. Rizzacasa, Org. Lett., 2004, 6, 3001;
(f) C. C. Lindsey, K. L. Wu and T. R. R. Pettus, Org. Lett., 2006, 8,
2365; (g) G. Zhou, D. Zheng, S. Da, Z. Xie and Y. Li, Tetrahedron
Lett., 2006, 47, 3349.
5 (a) B. A. Johns, Y. T. Pan, A. D. Elbein and C. R. Johnson, J. Am.
Chem. Soc., 1997, 119, 4856; (b) M. Sasaki, H. Fuwa, M. Inoue
and K. Tachibana, Tetrahedron Lett., 1998, 39, 9027; (c) M. Sasaki
and H. Fuwa, Synlett, 2004, 1851, and references therein;
(d) S. Ciblat, J. Kim, C. A. Stewart, J. Wang, P. Forgione,
D. Clyne and L. A. Paquette, Org. Lett., 2007, 9, 719.
Fig. 1 Stereochemistry of nucleophile addition.
lies far to the left. Further, use of a ketone electrophile provides
access to compounds that contain a quaternary center b to the
tetrahydropyran ring. When allyltrimethylsilane is used as the
secondary nucleophile (entries 4, 10), two oxygenated quaternary
centers are generated in a single process.
6 (a) W. B. Motherwell, B. C. Ross and M. J. Tozer, Synlett, 1989,
68; (b) A. G. Myers, D. Y. Gin and K. L. Widdowson, J. Am.
Chem. Soc., 1991, 113, 9661; (c) L. Cipolla, L. Liguori, F. Nicotra,
G. Torri and E. Vismara, Chem. Commun., 1996, 1253;
(d) H.-S. Dang, M. R. J. Elsegood, K.-M. Kim and
B. P. Roberts, J. Chem. Soc., Perkin Trans. 1, 1999, 2061;
(e) B. Vauzeilles and P. Sinay, Tetrahedron Lett., 2001, 42, 7269.
7 Hetero Diels–Alder: (a) R. E. Ireland and D. Haebich, Chem. Ber.,
1981, 114, 1418; (b) P. Hayes and C. Maignan, Synlett, 1994, 409;
(c) L. F. Tietze, G. Schneider, J. Wolfling, T. Nobel, C. Wulff,
I. Christian and A. Rubeling, Angew. Chem., Int. Ed., 1998, 37,
2469; (d) J. K. Gallos, V. C. Sarli, C. I. Stathakis, T. V. Koftis,
V. R. Nachmia and E. Coutouli-Argyropoulou, Tetrahedron, 2002,
58, 9351; (e) G. Zhou, D. Zheng, S. Da, Z. Xie and Y. Li,
Tetrahedron Lett., 2006, 47, 3349. Intramolecular Diels–Alder;
(f) P. A. Wender, R. M. Keenan and H. Y. Lee, J. Am. Chem.
Soc., 1987, 109, 4390. 1,3-Dipolar cycloaddition; (g) J. K. Gallos
and T. Koftis, J. Chem. Soc., Perkin Trans. 1, 2001, 415;
(h) P. A. Colinas, V. Jager, A. Lieberknecht and R. D. Bravo,
Tetrahedron Lett., 2003, 44, 1071; (i) X. Li, H. Takahashi,
O. Hideyo and S. Ikegami, Tetrahedron Lett., 2004, 45, 4123;
(j) G. Enderlin, C. Taillefumier, C. Didierjean and Y. Chapleur,
Tetrahedron: Asymmetry, 2005, 16, 2459; (k) P.-Z. Zhang, X.-L. Li,
H. Chen, Y.-N. Li and R. Wang, Tetrahedron Lett., 2007, 48, 7813.
8 (a) L. Lay, F. Nicotra, L. Panza, G. Russo and E. Caneva, J. Org.
In cases where a pre-existing stereocenter is present at C6 of
the tetrahydropyran, the three component coupling proceeds to
give the corresponding 2,6-cis-tetrahydropyrans as the only
isolated products (entries 11–13). The stereochemistry of these
compounds 22 and 23 was determined by nOe. The observed
stereoselectivity can be rationalized as shown in Fig. 1. The
observed stereoselectivity is consistent with addition of the
secondary nucleophile to an oxonium ion intermediate that exists
in a half-chair conformation in which the C6 substituent is
pseudo-equatorial (24B).16 Subsequent axial attack of the
nucleophile is then anticipated on both steric and stereoelectronic
grounds.17 Similar selectivity is observed in the addition of
nucleophiles to related tetrahydropyranyl oxonium species.18
In conclusion, we have demonstrated a facile synthesis of
tetrahydropyranyl ketide derivatives using a three component
coupling protocol. These studies demonstrate that 2-methylene-
tetrahydropyrans are suitable nucleophiles for addition to
activated aldehydes and ketones. Competing double bond iso-
merization is not a factor. The resulting 2-(tetrahydropyran-2-yl)-
alcohols will be useful intermediates for complex molecule
synthesis. Current efforts are aimed at the synthesis of
spirastrellolide A and related polyketide natural products.
These studies will be reported in due course.
Chem., 1992, 57, 1304; (b) G. Fra
Chem., 2007, 72, 1112.
´
ter and F. Schroder, J. Org.
¨
9 H. Liu, I. P. Smoliakova and L. N. Koikov, Org. Lett., 2002, 4, 3895.
10 (a) D. E. Williams, M. Roberge, R. Van Soest and R. J. Andersen,
J. Am. Chem. Soc., 2003, 125, 5296; (b) D. E. Williams,
M. Lapawa, X. Feng, T. Tarling, M. Roberge and
R. J. Andersen, Org. Lett., 2004, 6, 2607; (c) K. Warabi,
D. E. Williams, B. O. Patrick, M. Roberge and R. J. Andersen,
J. Am. Chem. Soc., 2007, 129, 508.
Financial support from the National Institutes of Health
(R01 GM064357) is gratefully acknowledged. We thank
Mr. Alex Augatis for assistance with nOe studies.
11 (a) T. Mukaiyama, K. Wariishi and Y. Sato, Chem. Lett., 1988,
1101; (b) H. Sugimura and K. Osumi, Tetrahedron Lett., 1989, 30,
1571; (c) A. K. Ghosh and R. Kawahama, Tetrahedron Lett., 1999,
40, 1083; (d) A. K. Ghosh and R. Kawahama, Tetrahedron Lett.,
1999, 40, 4751; (e) A. K. Ghosh, R. Kawahama and D. Wink,
Tetrahedron Lett., 1999, 40, 1083; (f) A. K. Ghosh, C.-X. Xu,
S. S. Sarang and D. Wink, Org. Lett., 2005, 7, 7.
Notes and references
1 For general reviews on the synthesis and use of exo-glycals, see:
(a) C. Taillefumier and Y. Chapleur, Chem. Rev., 2004, 104, 263;
(b) C.-H. Lin, H.-C. Lin and W.-B. Yang, Curr. Top. Med. Chem.,
2005, 5, 1431.
12 For example, see: (a) J. D. Prugh, C. S. Stanley, A. A. Deana and
H. G. Ramjit, Tetrahedron Lett., 1985, 26, 2947; (b) J. Prandi and
J. M. Beau, Tetrahedron Lett., 1989, 30, 4517; (c) C. Taillefumier
and Y. Chapleur, Can. J. Chem., 2000, 78, 708.
2 (a) T. V. RajanBabu and G. S. Reddy, J. Org. Chem., 1986, 51,
5458; (b) C. R. Johnson and B. A. Johns, Synlett, 1997,
1406; (c) T. F. Herpin, W. B. Motherwell and M. J. Tozer,
Tetrahedron: Asymmetry, 1994, 5, 2269; (d) A. D. Campbell,
D. E. Paterson, R. J. K. Taylor and T. M. Raynham,
Chem. Commun., 1999, 1599; (e) J. T. Link and B. K. Sorensen,
Tetrahedron Lett., 2000, 41, 9213; (f) J. R. Walker, G. Alshafie,
N. Nieves, J. Ahrens, M. Clagett-Dame, H. Abou-Issa and
R. W. Curley, Jr., Bioorg. Med. Chem., 2006, 14, 3038, see also ref. 1.
3 (a) H. Fuwa, N. Kainuma, K. Tachibana and M. Sasaki,
Tetrahedron Lett., 2004, 45, 4795; (b) K. C. Nicolaou,
K. P. Cole, M. O. Frederick, R. J. Aversa and R. M. Denton,
Angew. Chem., Int. Ed., 2007, 46, 8875; (c) M. Sasaki and H. Fuwa,
Nat. Prod. Rep., 2008, 25, 401, and references therein.
13 (a) N. A. Petasis and E. I. Bzowej, J. Am. Chem. Soc., 1990, 112, 6392;
(b) N. A. Petasis and S.-P. Lu, Tetrahedron Lett., 1995, 36, 2393.
14 A. Neokosmidi, V. Ragoussis and G. Evangelatos, J. Agric. Food
Chem., 2004, 52, 4368, see also ref. 4d and 7a.
15 Ethyl glyoxylate was freshly distilled before use according to the
procedure of Evans: D. A. Evans, D. W. C. MacMillan and
K. R. Campos, J. Am. Chem. Soc., 1997, 119, 10859.
16 R. J. Woods, C. W. Andrews and J. P. Bowen, J. Am. Chem. Soc.,
1992, 114, 859.
17 (a) P. Deslongchamps, Stereoelectronic Effects in Organic
Chemistry, Pergamon, New York, 1983, p. 211; (b) R. V. Stevens
and A. W. M. Lee, J. Am. Chem. Soc., 1979, 101, 7032;
(c) R. V. Stevens, Acc. Chem. Res., 1984, 17, 289.
18 (a) D. S. Brown, S. V. Ley and M. Bruno, Heterocycles, 1989, 28,
773; (b) C. G. Lucero and K. A. Woerpel, J. Org. Chem., 2006, 71,
2641; (c) C. Crawford, A. Nelson and I. Patel, Org. Lett., 2006, 8,
4231.
4 (a) R. E. Ireland, S. Thaisrivongs and P. H. Dussault, J. Am.
Chem. Soc., 1988, 110, 5768; (b) A. Haudrechy and P. Sinay,
Carbohydr. Res., 1991, 256, 375; (c) P. Hayes and C. Maignan,
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6457–6459 | 6459