2104
J. Hartung et al. / Tetrahedron: Asymmetry 20 (2009) 2097–2104
2. Walter, W.; Schaumann, E. Synthesis 1971, 111–130.
3. Hartung, J.; Gottwald, T.; Špehar, K. Synthesis 2002, 1469–1498.
4. Hartung, J. Eur. J. Org. Chem. 2001, 619–632.
183.2. Anal. Calcd for C14H25O2NS2: C, 55.41; H, 8.30; N, 4.62. Found:
C, 55.60; H, 8.23; N, 4.64.
5. Jones, M. J.; Moad, G.; Rizzardo, E.; Solomon, D. H. J. Org. Chem. 1989, 54, 1607–
1611.
4.7.1.2. ( )-trans-N-(2-Hydroxycyclohexyloxy)-4-methylthiazole-
2(3H)-thione ( )-trans-10e. From N-hydroxy-4-methylthiazole-
2(3H)-thione tetraethylammonium salt 8 (912 mg, 3.30 mmol)
and cis-hexahydro-benz-[1,3,2]-dioxathiolane-2,2-dioxide cis-12e
(588 mg, 3.30 mmol) in DMF (30 mL). The crude product was puri-
fied by column chromatography [Rf = 0.26, SiO2, Et2O/pentane = 2:1
(v/v)]. Yield: 290 mg (1.18 mmol, 36%); colorless solid. 1H NMR
(CDCl3, 400 MHz) d 1.25–1.81 (m, 6H), 2.08–2.20 (m, 2H), 2.32
(d, 3H, 4J = 0.9 Hz, CH3), 3.79–3.86 (m, 1H), 4.32 (s, 1H, OH),
4.70–4.76 (m, 1H), 6.24 (m, 1H, 4J = 0.9 Hz). 13C NMR (CDCl3,
150 MHz) d 14.1, 23.4, 24.2, 30.1, 33.6, 72.2, 90.5, 103.1, 139.0,
181.0. Anal. Calcd for C10H15NO2S2: C, 48.95; H, 6.16; N, 5.71.
Found: C, 49.06; H, 6.31; N, 5.71.
6. Elson, I. H.; Mao, S. W.; Kochi, J. K. J. Am. Chem. Soc. 1975, 97, 335–341.
7. Gottwald, T.; Greb, M.; Hartung, J. Synlett 2004, 65–68.
8. Hartung, J.; Kneuer, R. Tetrahedron: Asymmetry 2003, 14, 3019–3031.
9. Haramange, J.-C.; Figadère, B. Tetrahedron: Asymmetry 1993, 4, 1711–1774.
10. Wolfe, J. P.; Hay, M. B. Tetrahedron 2007, 63, 261–290.
11. Mitsunobu, O. Synthesis 1981, 1–28.
12. But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007, 2, 1340–1355.
13. Haslam, E. Tetrahedron 1980, 36, 2409–2433.
14. Makosza, M.; Fedorynski, M. Adv. Catal. 1987, 35, 375–422.
15. Kocien´ ski, P. J. Protecting Groups; Thieme: Stuttgart, 1994.
16. Salomon, C. J.; Mata, E. G.; Mascaretti, O. A. Tetrahedron 1993, 49, 3691–
3734.
17. Chmiak, A.; Przychodzen, R. J. Heteroatom Chem. 2002, 13, 169–194.
18. Hartung, J.; Schneiders, N.; Gottwald, T. Tetrahedron Lett. 2007, 48, 6027–
6030.
19. Hartung, J.; Daniel, K.; Rummey, C.; Bringmann, G. Org. Biomol. Chem. 2006, 4,
4089–4100.
20. Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538–7539.
21. Barton, D. H. R.; Samadi, M. Tetrahedron 1992, 48, 7083–7090.
22. Hartung, J. Synlett 1996, 1206–1209.
4.8. From other N-alkoxythiazole-2(3H)-thiones via chemical
transformation
23. Hartung, J.; Kneuer, R.; Schwarz, M.; Svoboda, I.; Fueß, H. Eur. J. Org. Chem.
1999, 97–106.
24. Hartung, J.; Kneuer, R.; Laug, S.; Schmidt, P.; Špehar, K.; Svoboda, I.; Fuess, H.
Eur. J. Org. Chem. 2003, 4033–4052.
4.8.1. N-[(5S,6S)-6-Hydroxydecyl-5-oxy]-4-methylthiazole-
2(3H)-thione (S,S)-10d
A flame dried Schlenk flask was charged with N-alkoxythiazole-
2(3H)-thione (S,R)-10d (480 mg, 1.60 mmol), PPh3 (1.68 g,
6.40 mmol), p-nitrobenzoic acid (1.07 g, 6.40 mmol) and toluene
(25 mL). At 0 °C DEAD (1.12 g, 6.40 mmol) was added in a dropwise
manner. The resulting reaction mixture was stirred in the dark for
94 h at 22 °C. Thereafter the solution was washed with satd aq
K2CO3 (3 ꢁ 50 mL) and H2O (2 ꢁ 50 mL). The combined aq layers
were extracted with Et2O (3 ꢁ 50 mL). Combined organic layer and
washings were dried (MgSO4), the solvent was removed under re-
duced pressure. The remaining residue was purified by column chro-
matography [Rf = 0.25, SiO2, Et2O/pentane = 1:2 (v/v)] to afford
330 mg (0.73 mmol, 46%) of N-[(5S,6S)-6-sulfooxydecyl-5-oxy]-4-
25. Hartung, J.; Bergsträßer, U.; Daniel, K.; Schneiders, N.; Svoboda, I.; Fuess, H.
Tetrahedron 2009, 65, 2567–2573.
26. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543–2549.
27. Giese, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 553–565.
28. Hartung, J.; Schwarz, M.. In Organic Syntheses; Freeman, J. P., Ed.; Wiley: New
York, 2004; Coll. Vol. 10, pp 437–441.
29. Gross, A.; Schneiders, N.; Daniel, K.; Gottwald, T.; Hartung, J. Tetrahedron 2008,
64, 10882–10889.
30. Hartung, J. In Handbook of Reagents for Organic Synthesis—Reagents for Radical
and Radical Ion Chemistry; Crich, D., Ed.; Wiley: Chichester, 2008; pp 175–179.
31. Hartung, J.; Daniel, K.; Bergsträßer, U.; Kempter, I.; Schneiders, N.; Danner, S.;
Schmidt, P.; Svoboda, I.; Fuess, H.; Eur. J. Org. Chem. doi: 10.1002/
ejoc.200900069.
32. Isaacs, N. Physical Organic Chemistry, 2nd ed.; Longman: Burnt Mill, Harlow,
1995. Chapter 10.
33. Damm, W.; Giese, B.; Hartung, J.; Hasskerl, T.; Houk, K. N.; Hüter, O.; Zipse, H. J.
Am. Chem. Soc. 1992, 114, 4067–4079.
methylthiazole-2(3H)-thione as
a
yellow oil. 1H NMR (CDCl3,
34. Kalinowski, H. O.; Berger, S.; Braun, S. 13C NMR-Spektroskopie; Thieme:
Stuttgart, 1984. pp 102–106.
400 MHz) d 0.85 (t, 3H, J = 7.2 Hz), 0.90 (t, 3H, J = 7.0 Hz), 1.18–1.61
(m, 12H), 2.24 (s, 3H), 5.44–5.47 (m, 1H), 5.76–5.79 (m, 1H), 6.13
(m, 1H, J = 1.0 Hz), 8.22–8.32 (m, 4H, Ar-H). 13C NMR (CDCl3,
150 MHz) d 13.8, 13.9 (2C), 14.0, 22.5, 22.7, 26.9, 27.6, 28.0, 30.5,
74.8, 83.0, 103.1, 123.6, 130.8, 135.2, 138.8, 150.7, 164.1, 183.2. A
solution of N-[(5S,6S)-6-sulfooxydecyl-5-oxy]-4-methylthiazole-
2(3H)-thione (0.73 mmol) in MeOH (15 mL) was added in a dropwise
manner with a solution of NaOH (117 mg, 2.92 mmol) in MeOH
(15 mL). The reaction mixture was stirred in the dark at 22 °C for
22 h. Next, Et2O (60 mL) and H2O (60 mL) were added. The organic
layer was separated and kept. The aq layer was extracted with Et2O
(3 ꢁ 30 mL). The combined organic layer and washings were dried
(MgSO4). The solvent was removed under reduced pressure to afford
a residue, which was purified by column chromatography [Rf = 0.24,
SiO2, Et2O/pentane = 1:1 (v/v)]. Yield: 190 mg (0.63 mmol, 86%); yel-
35. Testa, B. Grundlagen der Organischen Stereochemie; VCH: Weinheim, 1983. p 103.
36. Fuchs, B. Top. Stereochem. 1978, 10, 1–94.
37. Eliel, E. L.; Wilen, S. H.; Mander, L. N. In Stereochemistry of Organic Compounds;
John Wiley & Sons: New York, NY, 1993; pp 686–754.
38. Kolb, H. C.; van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–
2547.
39. Lohray, B. B. Synthesis 1992, 1035–1052.
40. Amberg, M.; Bergsträßer, U.; Stapf, G.; Hartung, J. J. Org. Chem. 2008, 73, 3907–
3910; Amberg, M.; Bergsträßer, U.; Stapf, G.; Hartung, J. J. Org. Chem. 2008, 73,
6052.
41. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Chadha, R. J.; Crispino, G. A.;
Davis, W. D.; Hartung, J.; Ogino, Y.; Shibata, T. J. Org. Chem. 1993, 58, 844–
849.
42. Walter, W.; Schaumann, E.; Paulsen, H. Liebigs Ann. Chem. 1969, 727,
61–70.
43. Barton, D. H. R.; Crich, D.; Kretzschmar, G. J. Chem. Soc., Perkin Trans. 1 1986,
39–53.
44. Hartung, J.; Schwarz, M.. In Organic Syntheses; Freeman, J. P., Ed.; Wiley: New
York, 2004; Coll. Vol. 10, pp 437–441.
45. Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444–2451.
46. Letsinger, R. L.; Traynham, J. G.; Bobko, E. J. Am. Chem. Soc. 1952, 74, 399–
401.
low oil; ½a 2D5
ꢂ
¼ þ92:2 (c 1.46, EtOH). 1H NMR (CDCl3, 400 MHz) d 0.89
(t, 3H, J = 7.0 Hz), 0.92 (t, 3H, J = 7.2 Hz), 1.22–1.85 (m, 12H), 2.28 (d,
3H, J = 1.2 Hz), 3.20 (d, 1H, J = 1.2 Hz, OH), 3.75–3.82 (m, 1H), 4.99–
5.03 (m, 1H), 6.20 (m, 1H, 4J = 1.2 Hz). 13C NMR (CDCl3, 150 MHz) d
13.8, 13.9 (2C), 14.0, 22.6, 22.8, 26.9, 28.0, 28.4, 33.4, 71.3, 88.4,
103.1, 139.2, 181.2. Anal. Calcd for C14H25NO2S2: C, 55.41; H, 8.30;
N, 4.62. Found: C, 55.90; H, 8.34; N, 4.46.
47. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Martin, S. F.; Dodge, J. A.
Tetrahedron Lett. 1991, 32, 3017–3020.
48. Mori, K.; Otsuka, T.; Oda, M. Tetrahedron 1984, 40, 2929–2934.
49. Streitwieser, A.; Waiss, A. C. J. Org. Chem. 1962, 27, 290–292.
50. Neubert, M. E.; Keast, S. S.; Ezenyilimba, M. C.; Hanlon, C. A.; Jones, W. C. Mol.
Cryst. Liq. Cryst. Sci. Technol. Sect. A 1993, 237, 193–206.
51. Michel, T.; Kirschning, A.; Beier, Ch.; Bräuer, N.; Schaumann, E.; Adiwidjaja, G.
Liebigs Ann. Org. Bioorg. Chem. 1996, 11, 1811–1822.
52. Hartung, J.; Hünig, S.; Kneuer, R.; Schwarz, M.; Wenner, H. Synthesis 1997,
1433–1438.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeins-
chaft (Grants Ha1705/3–3 and 5–2).
53. Perrin, D. D.; Armarego, W. L. F.; Perin, D. R. Purification of Laboratory Chemicals,
2nd ed.; Pergamon Press: Oxford, 1980.
54. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519.
55. Amberg, M.; Bergsträßer, U.; Stapf, G.; Hartung, J. J. Org. Chem. 2008, 73, 3907–
3910; Amberg, M.; Bergsträßer, U.; Stapf, G.; Hartung, J. J. Org. Chem 2008, 73,
6052.
References
1. Beckwith, A. L. J.; Hay, B. P. J. Am. Chem. Soc. 1988, 110, 4115–4116.