Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7973
by blocking the MDM2-p53 protein-protein interaction.
While 7 also activates p53 in normal cells, it selectively induces
tumor cells with wild-type p53 to undergo cell death and
apoptosis but not in normal cells. In vivo, 7 induces p53
activation in xenograft tumor tissues with wild-type p53.
While 7 also induces p53 activation in normal mouse tissues,
it is selectively toxic to tumor tissues but not to normal mouse
tissues, even after a total of 28 doses. In contrast, irinotecan
and irradiation are toxic to certain normal mouse tissues.
Collectively, our current and previous studies have provided
strong evidence that reactivation of p53 using small-molecule
inhibitors is a promising new cancer therapeutic strategy.
Although targeting protein-protein interaction using non-
peptidic, small molecules has proven to be a very challenging
task in modern drug discovery and medicinal chemistry, our
present study has provided solid proof that it is feasible to
design potent, cell-permeable, and orally active small-mole-
cule inhibitors of the MDM2-p53 interaction. Compound 5
is arguably the most potent, specific, cell-permeable, and
orally active small-molecule inhibitor discovered to date and
represents a promising lead compound for further evaluation
as a new class of anticancer drug.
Fotouhi, N.; Liu, E. A. In vivo activation of the p53 pathway by
small molecule antagonists of MDM2. Science 2004, 303, 844–848.
(9) Ding, K.; Lu, Y.; Nikolovska-Koleska, Z.; Qiu, S.; Ding, Y.; Gao,
W.; Stuckey, J.; Roller, P. P.; Tomita, Y.; Deschamps, J. R.; Wang,
S. Structure-based design of potent non-peptide MDM2 inhibitors.
J. Am. Chem. Soc. 2005, 127, 10130–10131.
(10) Ding, K; Lu, Y; Nikolovska-Coleska, Z; Wang, G; Qiu, S; Shang-
ary, S; Gao, W; Qin, D; Stuckey, J; Krajewski, K; Roller, P. P.;
Wang, S. Structure-based design of spiro-oxindoles as potent,
specific small-molecule inhibitors of the MDM2-p53 interaction.
J. Med. Chem. 2006, 49, 3432–3435.
(11) Shangary, S; Qin, D; McEachern, D; Liu, M; Miller, R. S.; Qiu, S;
Nikolovska-Coleska, Z; Ding, K; Wang, G; Chen, J; Bernard, D;
Zhang, J; Lu, Y; Gu, Q; Shah, R. B.; Pienta, K. J.; Ling, X; Kang, S;
Guo, M; Sun, Y; Yang, D; Wang, S. Temporal activation of p53 by
a specific MDM2 inhibitor is selectively toxic to tumors and leads
to complete tumor growth inhibition. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 3933–39388.
(12) Saddler, C.; Ouillette, P.; Kujawski, L.; Shangary, S.; Talpaz, M.;
Kaminski, M.; Erba, H.; Shedden, K.; Wang, S.; Malek, S. N.
Comprehensive biomarker and genomic analysis identifies
p53 status as the major determinant of response to MDM2 inhi-
bitors in chronic lymphocytic leukemia. Blood 2008, 111, 1584–
1593.
(13) Shangary, S.; Ding, K.; Qiu, S.; Nikolovska-Coleska, Z.; Bauer, J.
A.; Liu, M.; Wang, G.; Lu, Y.; McEachern, D.; Bernard, D.;
Bradford, C. R.; Carey, T. E.; Wang, S. Reactivation of p53 by a
specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle
arrest and selective cell death in colon cancer. Mol Cancer Ther.
2008, 7, 1533–1542.
Acknowledgment. We are grateful for financial support from
the National Cancer Institute, National Institutes of Health
(Grants R01CA121279, P50CA06956, and P50CA097248),
the University of Michigan Cancer Center (Core Grant
P30CA046592), the Prostate Cancer Foundation, the Leukemia
and Lymphoma Society, and Ascenta Therapeutics, Inc.
(14) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.;
Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K.
L.; Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.;
Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Manthey, C. L.;
Petrella, E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.;
Maroney, A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F.
Discovery and cocrystal structure of benzodiazepinedione
HDM2 antagonists that activate p53 in cells. J. Med. Chem.
2005, 48, 909–912.
Supporting Information Available: Experimental section,
including chemical data for 2-9, details of the fluorescence
polarization-based binding assay, cell growth and cell viability
assays, Western blot analysis, and in vivo animal experiment.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(15) Lu, Y; Nikolovska-Coleska, Z; Fang, X; Gao, W; Shangary, S;
Qiu, S; Qin, D; Wang, S. Discovery of a nanomolar inhibitor of the
human murine double minute 2 (MDM2)-p53 interaction through
an integrated, virtual database screening strategy. J. Med. Chem.
2006, 49, 3759–3762.
(16) Galatin, P. S.; Abraham, D. J. A nonpeptidic sulfonamide inhibits
the p53-mdm2 interaction and activates p53-dependent transcrip-
tion in mdm2-overexpressing cells. J. Med. Chem. 2004, 47, 4163–
4165.
(17) Bowman, A. L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.;
Carlson, H. A. Small molecule inhibitors of the MDM2-p53
interaction discovered by ensemble-based receptor models. J.
Am. Chem. Soc. 2007, 129, 12809–12814.
References
(1) Levine, A. J. p53, the cellular gatekeeper for growth and division.
Cell 1997, 88, 323–331.
(2) Vogelstein, B.; Lane, D.; Levine, A. J. Surfing the p53 network.
Nature 2000, 408, 307–310.
(18) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B.
€
(3) Vousden, K. H.; Lu, X. Live or let die: the cell’s response to p53.
Nat. Rev. Cancer 2002, 2, 594–604.
(4) Wu, X.; Bayle, J. H.; Olson, D.; Levine, A. J. The p53-mdm-2
T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Kallblad, P.; Kemp, S.
J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.;
Reid, R. J.; Saravanan, K.; Willems, H. M.; Lunec, J. Small-
molecule inhibitors of the MDM2-p53 protein-protein interaction
based on an isoindolinone scaffold. J. Med. Chem. 2006, 49, 6209–
6221.
autoregulatory feedback loop. Genes Dev. 1993, 7 (7A), 1126–1132.
ꢀ
(5) Chene, P. Inhibiting the p53--MDM2 interaction: an important
target for cancer therapy. Nat. Rev Cancer. 2003, 3, 102–109.
(6) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.;
Levine, A. J.; Pavletich, N. P. Structure of the MDM2 oncoprotein
bound to the p53 tumor suppressor transactivation domain.
Science 1996, 274, 948–953.
(19) Vassilev, L. T. p53 activation by small molecules: application in
oncology. J. Med. Chem. 2005, 48, 4491–4499.
(20) Vassilev, L. T. MDM2 inhibitors for cancer therapy. Trends Mol.
Med. 2007, 13, 23–31.
(7) Garcia-Echeverria, C.; Chene, P.; Blommers, M. J. J.; Furet, P.
Discovery of potent antagonists of the interaction between human
double minute 2 and tumor suppressor p53. J. Med. Chem. 2000,
43, 3205–3208.
(21) Shangary, S.; Wang, S. Small-molecule inhibitors of the
MDM2-p53 protein-protein interaction to reactivate p53 func-
tion: a novel approach for cancer therapy. Annu. Rev. Pharmacol.
Toxicol. 2009, 49, 223–41.
(8) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.;
(22) Shangary, S.; Wang, S. Targeting the MDM2-p53 interaction for
Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.;
cancer therapy. Clin. Cancer Res. 2008, 14, 5318–5324.