pubs.acs.org/acsmedchemlett
REFERENCES
(15) (a) Buzard, D. J.; Thatte, J.; Lerner, M.; Edwards, J.; Jones, R. M.
Recent progress in the development of selective S1P1 receptor
agonists for the treatment of inflammatory and autoimmune
disorders. Expert Opin. Ther. Patents 2008, 18, 1141–1159.
(1)
Hannun, Y. A.; Obeid, L. M. Principles of bioactive lipid
signaling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol.
2008, 9, 139–150.
Kihara, A.; Mitsutake, S.; Mizutani, Y.; Igarashi, Y. Metabolism
and biological functions of two phosphorylated sphingoli-
pids, sphingosine-1-phosphate and ceramide 1-phosphate.
Prog. Lipid Res. 2007, 46, 126–144.
ꢀ
(16) Cooke, N.; Zecri, F. Sphingosine-1-phosphate type 1 receptor
(2)
modulators: recent advances and therapeutic potential.
Annu. Rep. Med. Chem. 2007, 42, 245–263.
(17) Lanman, B. A.; Cee, V. J.; Cheruku, S. R.; Frohn, M.; Golden, J.;
Lin, J.; Lobera, M.; Marantz, Y.; Muller, K. M.; Neira, S. C.;
Pickrell, A. J.; Rivenzon-Segal, D.; Schutz, N.; Sharadendu, A.;
Yu, X.; Zhang, Z.; Buys, J.; Fiorino, M.; Gore, A.; Horner, M.;
Itano, A.; McElvain, M.; Middleton, S.; Schrag, M.; Vargas,
H. M.; Xu, H.; Xu, Y.; Zhang, X.; Siu, J.; Burli, R. W. Discovery
of a potent, S1P3-sparing benzothiazole agonist of sphingo-
sine-1-phosphate receptor 1 (S1P1). ACS Med. Chem. Lett.,
(DOI: 10.1021/ml00228m).
(18) During the course of our S1P1 agonist program, we found that
receptor internalization (RI) of an hS1P1-GFP fusion protein
in U2OS cells correlated much better to in vivo blood
lymphocyte depletion activity than Ca2þ mobilization in
hS1P1- and Gq/i5-transfected CHO-K1 cells. Therefore, recep-
tor internalization was used for the main assessment of
hS1P1 activity. Mechanistically, receptor internalization
may provide a better representation of the receptor down-
regulation that is believed to be responsible for the inhibition
of lymphocyte egress observed with S1P1 agonists. For more
information, see ref 6.
(19) Hughes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.; DeCrescenzo,
G. A.; Devraj, R. V.; Ellsworth, J.; Wager, T.; Whiteley, L.;
Zhang, Y. Physicochemical drug properties associated with in
vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008,
18, 4872–4875.
(20) ChemBioDraw Ultra, v. 11.0; Cambridgesoft: 100 Cambridge-
Park Drive, Cambridge, MA 02140.
(21) Brinkmann, V. FTY720 (fingolimod) in multiple sclerosis:
therapeutic effects in the immune and the central nervous
system. Br. J. Pharmacol. 2009, 158, 1173–1182.
(3)
(4)
(5)
(6)
(7)
(a) Rosen, H.; Gonzalez-Cabrera, P. J.; Sanna, M. G.; Brown, S.
Sphingosine-1-phosphate receptor signaling. Annu. Rev. Bio-
chem. 2009, 78, 743–768.
Marsolias, D.; Rosen, H. Chemical modulators of sphingo-
sine-1-phosphate receptors as barrier-oriented therapeutic
molecules. Nat. Rev. Drug Discov. 2009, 8, 297–307.
Huwiler, A.; Pfeilschifter, J. New players on the center stage:
sphingosine-1-phosphate and its receptors as drug targets.
Biochem. Pharmacol. 2008, 75, 1893–1900.
Brinkmann, V. Sphingosine-1-phosphate receptors in health
and disease: mechanistic insights from gene deletion studies
and reverse pharmacology. Pharmacol. Ther. 2007, 115, 84–105.
Mandala, S.; Hajdu, R.; Bergstrom, J.; Quackenbush, E.; Xie,
J.; Milligan, J.; Thornton, R.; Shei, G.; Card, D.; Keohane, C.;
Rosenbach, M.; Hale, J.; Lynch, C. L.; Rupprecht, K.; Parsons, W.;
Rosen, H. Alteration of lymphocyte trafficking by sphingosine-
1-phosphate receptor agonists. Science 2002, 296, 346–349.
Brinkmann, V.; Davis, M. D.; Heise, C. E.; Albert, R.; Cottens,
S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.;
Foster, C. A.; Zollinger, M.; Lynch, K. R. The immune mod-
ulator FTY720 targets sphingosine-1-phosphate receptors.
J. Biol. Chem. 2002, 277, 21453–21457.
Forrest, M.; Sun, S.-Y.; Hajdu, R.; Bergstrom, J.; Card, D.;
Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.;
Mills, S.; Nomura, N.; Rosen, H.; Rosenbach, M.; Shei, G.-J.;
Singer, I. I..; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.;
Mandala, S. Immune cell regulation and cardiovascular ef-
fects of sphingosine-1-phosphate receptor agonists in ro-
dents are mediated via distinct receptor subytpes. J. Pharm.
Exp. Ther. 2004, 309, 758–768.
(8)
(9)
(22) Calculations were run with density functional theory at the
B3LYP/6-31G* level, and the aqueous medium effects were
simulated by the Polarisable Continuum Model as included
in the Gaussian 98 suite of programs: Frisch, M. J.; et al.
Gaussian 98, Revision A.5; Gaussian, Inc.: Pittsburgh, PA,
1998.
(10) Sanna, M. G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.-Y.; Peterson,
M. S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H.
Sphingosine-1-phosphate (S1P) receptor subtypes S1P1 and
S1P3, respectively, regulate lymphocyte recirculation and
heart rate. J. Biol. Chem. 2004, 279, 13839–13848.
(11) Schmouder, R.; Serra, D.; Wang, Y.; Kovarik, J. M.; DiMarco, J.;
Hunt, T. L.; Bastien, M.-C. FTY720: Placebo-controlled study
of the effect on cardiac rate and rhythm in healthy subjects.
J. Clin. Pharmacol. 2006, 46, 895–904.
(23) The 24 h time point was ideal, as it reduced the effects of
dosing on lymphocyte counts and generally produced a
linear relationship between compound concentration in
plasma and lymphocyte depletion.
(12) Salvadori, M.; Budde, K.; Charpentier, B.; Klempnauer, J.;
Nashan, B.; Pallardo, L. M.; Eris, J.; Schena, F. P.; Eisenberger,
U.; Rostaing, L.; Hmissi, A.; Aradhye, S. FTY720 versus MMF
with Cyclosporine in de novo renal transplantation: a 1-year,
randomized controlled trial in Europe and Australasia. Am. J.
Transplant. 2006, 6, 2912–2921.
(13) Kappos, L.; Radue, E.-W.; O'Connor, P.; Polman, C.; Hohlfeld,
R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.;
Zhang-Auberson, L.; Burtin, P. A placebo-controlled trial of
oral fingolimod in relapsing multiple sclerosis. New Engl. J.
Med. 2010, 362, 387–401.
(14) Cohen, J. A.; Barkhof, F.; Comi, G.; Hartung, H.-P.; Khatri,
B. O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo,
G.; Tiel-Wilck, K.; de Vera, A.; Jin, J.; Stites, T.; Wu, S.; Aradhye,
S.; Kappos, L. Oral fingolimod or intramuscular interferon
for relapsing multiple sclerosis. New Engl. J. Med. 2010, 362,
402–415.
(24) Hale, J. J.; Lynch, C. L.; Neway, W.; Mills, S. G.; Hajdu, R.;
Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.;
Parent, S. A.; Chrebet, G.; Bergstrom, J.; Card, D.; Ferrer, M.;
Hodder, P.; Strulovici, B.; Rosen, H.; Mandala, S. A rational
utilization of high-throughput screening affords selective,
orally bioavailable 1-benzyl-3-carboxyazetidine sphingo-
sine-1-phosphate-1 receptor agonists. J. Med. Chem. 2004, 47,
6662–6665.
(25) This was confirmed in studies exploring higher doses of 5d in
Lewis rats.
(26) Gold, R.; Linington, C.; Lassmann, H. Understanding the
pathogenesis and therapy of multiple sclerosis via animal
models: 70 years of merits and culprits in experimental
autoimmune encephalomyelitis research. Brain 2006, 129,
1953–1971.
(27) hERG inhibition was assessed by a manual patch clamp assay
(ChanTest, Cleveland, OH, USA).
r
2010 American Chemical Society
111
DOI: 10.1021/ml100306h ACS Med. Chem. Lett. 2011, 2, 107–112
|