S. H. Lee et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6632–6636
6635
Table 2
In conclusion, we investigated a series of pentacycle derivatives
for their binding affinity for cannabinoid rCB1 and hCB2 receptors.
We have identified a novel series of small molecule rCB1 ligands
that demonstrate binding affinity superior to that of known rCB1
antagonists. Several compounds in this series showed potent
rCB1 receptor binding affinities, validating the hypothesis that a
bioisostere of polar amide groups in the C-4 region of pyrazole
can provide a novel series of pentacycle derivatives which act as
rCB1 receptor ligands. Of note is 2-(5-(4-bromophenyl)-1-(2,4-
dichlorophenyl)-4-(5-methyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-3-
yl)-5-(1-(trifluoromethyl)cyclopropyl)-1,3,4-oxadiazole (16l) was
shown to possess the highest binding affinity in this pentacycle
series prepared to date. The analogue 16l was also shown to be po-
tent in the CHO-hCB1R-Luciferase assay, with IC50 value being
38.5 nM, thus demonstrating inverse agonism activity of this ser-
ies. The information obtained from the SAR studies in this series
might help to design more active CB1 antagonists or inverse ago-
nists that are structurally related to this series.
Binding affinity of thiadiazoles to rCB1 receptora
N
N
X
Z
N
S
N
N
R1
N
Cl
Cl
16
R1
Rimonabant
(4-Chlorophenyl)cyclopropyl
1-(Trifluoromethyl)cyclopropyl
(4-Chlorophenyl)cyclopropyl
1-(Trifluoromethyl)cyclopropyl
t-Bu
Compound
rCB1 IC50
b
X
Z
5.0 1.0c
3.23
26.9
3.03
7.39
4.93
4.44
4.86
2.56
3.70
Cl
Cl
Cl
Cl
Br
Br
Br
Br
Br
Br
O
O
S
16m
16n
16o
16p
16q
16r
16s
16t
S
O
O
O
S
(4-Chlorophenyl)cyclopropyl
1-(Trifluoromethyl)cyclopropyl
t-Bu
Acknowledgments
S
S
(4-Chlorophenyl)cyclopropyl
1-(Trifluoromethyl)cyclopropyl
16u
16v
We thank Dr. Chong-Hwan Chang for his leadership throughout
small molecule programs at GCC. Also we are grateful to Dr. Eun
Chul Huh, Mr. Jung Ho Kim and Mr. Jung-Won Jeon at GCC Office
of R&D planning and coordination for their supports and services.
4.21
a
b
c
rCB1 receptor was collected from brain tissue of SD rat.
These data were obtained by single determinations.
The rCB1 R binding affinity for rimonabant has showed a certain number in the
close range (IC50 = 5.0 1.0 nM) in each different assay (>1500 compounds tested).
Supplementary data
This observation was made in two pairs of compounds 16n
(IC50 = 26.9 nM) and 16p (IC50 = 7.39 nM) by replacement of oxadi-
azoles 16c (IC50 = 14.7 nM) and 16f (IC50 = 4.14 nM), respectively.
This phenomenon was even more pronounced with bis-thiadiazole
(16v, IC50 = 4.21 nM vs 16l, IC50 = 1.72 nM), indicating bis-thiadia-
zole rings make the molecule somewhat bulkier overall, thereby
slightly reducing binding potency against rCB1 receptor.
The interesting compounds were further evaluated with obser-
vation of the hCB2 receptor binding affinity. 22 The IC50 values were
measured for the recombinant human CB2 receptor expressed in
CHO cells and employing [3H]WIN-55,212-2 as a radio-ligand.21
These results are shown in Table 3. The hCB2/rCB1 selectivity
turned out to be modest, ranging from 142 to 167 among the com-
pounds tested. However, compound with (4-chlorophenyl)cyclo-
propyl appears to deactivate hCB2 receptor binding affinity while
maintaining their favorable binding affinity against rCB1 receptor,
thereby improving hCB2/rCB1 selectivity. In order to further eval-
uate this series, pharmacokinetic (PK) properties of 16l have been
measured in rats. After oral administration of a 5-mg/kg dose of 16l
Supplementary data associated with this article can be found, in
References and notes
1. Lee, J.; Song, K.-S.; Kang, J.; Lee, S. H.; Lee, J. Curr. Top. Med. Chem. 2009, 9, 564.
2. Lange, J. H. M.; Kruse, C. G. Drug Discovery Today 2005, 10, 693.
3. Howlett, A. C.; Breivogel, C. S.; Childers, S. R.; Deadwyler, S. A.; Hampson, R. E.;
Porrio, L. J. Neuropharmacology 2004, 47, 345.
4. Lafontan, M.; Piazza, P. V.; Girard, J. Diabetes Metab. 2007, 33, 85. and reference
cited therein.
5. (a) Carrier, E. J.; Kearn, C. S.; Barkmeier, A. J.; Breese, N. M.; Yang, W.;
Nithipatikom, K.; Pfister, S. L.; Cambell, W. B.; Hillard, C. J. Mol. Pharmacol. 2004,
65, 999; (b) Klein, T. W.; Newton, C.; Larsen, K.; Lu, L.; Perkins, I.; Nong, L.;
Friedman, H. J. Leukocyte Biol. 2003, 74, 486.
6. (a) Rinaldi-Carmona, M.; Barth, F.; Héaulme, M.; Alonso, R.; Shire, D.; Congy, C.;
Soubrié, P.; Breliére, J.-C.; le Fur, G. Life Sci. 1995, 56, 1941; (b) Rinaldi-Carmona,
M.; Barth, F.; Héaulme, M.; Shire, D.; Calandra, B.; Congy, C.; Martinez, S.;
Maruani, J.; Néliat, G.; Caput, D.; Ferrara, P.; Soubrié, P.; Breliére, J.-C.; le Fur, G.
FEBS Lett. 1994, 350, 240.
7. (a) Lange, J. H.; Coolen, H. K.; van Stuivenberg, H. H.; Dijksman, J. A.;
Herremans, A. H.; Ronken, E.; Keizer, H. G.; Tipker, K.; McCreary, A. C.;
Veerman, W.; Wals, H. C.; Stork, B.; Verveer, P. C.; den Hartog, A. P.; de Jong, N.
M.; Adolfs, T. J.; Hoogendoorn, J.; Kruse, C. G. J. Med. Chem. 2004, 47, 627; (b)
Griffith, D. A.; Hadcock, J. R.; Black, S. C.; Iredale, P. A.; Carpino, P. A.; DaSilva-
Jardine, P.; Day, R.; DiBrino, J.; Dow, R. L.; Landis, M. S.; O’Connor, R. E.; Scott, D.
O. J. Med. Chem. 2009, 52, 234.
8. Lin, L. S.; Lanza, T. J.; Jewell, J. J. P.; Liu, P.; Shah, S. K.; Qi, H.; Tong, X.; Wnag, J.;
Xu, S. S.; Fong, T. M.; Shen, C.-P.; Lao, J.; Xiao, J. C.; Shearman, L. P.; Stribling, D.
S.; Rosko, K.; Strack, A.; Marsh, D. J.; Feng, Y.; Kumar, S.; Samuel, K.; Yin, W.; der
Ploeg, L. V.; Mills, S. G.; MacCoss, M.; Goulet, M. T.; Hagmann, W. K. J. Med.
Chem. 2006, 49, 7584.
9. (a) Barth, F.; Congy, C.; Martinez, S.; Rinaldi, M. WO97/19063, 2000.; (b) Barth,
F.; Casellas, P.; Congy, C.; Martinez, S.; Rinaldi, M. C07D/23114, 1995.
10. Hutst, D. P.; Lynch, D. L.; Barnett-Norris, J.; Hyatt, S. M.; Seltzman, H. H.; Zhong,
M.; Song, Z.-H.; Nie, J.; Lewis, D.; Reggio, P. H. Mol. Pharmacol. 2002, 62, 1274.
11. Shim, J.-Y.; Welsh, W. J.; Cartier, E.; Edwards, J. L.; Howlett, A. C. J. Med. Chem.
2002, 45, 1447.
12. (a) Dow, L. R. U.S. Patent 2004/0077650 A1, 2004.; (b) Coe, J. W. U.S. Patent
2005/0043327 A1, 2005.; (c) Barth, F.; Congy, C.; Gueule, P.; Rinaldi-Carmona,
M.; Van Broeck, D. PCT Patent Application WO2006/087480A1, 2006.
13. Kang, S. Y.; Lee, S.-H.; Seo, H. J.; Jung, M. E.; Ahn, K.; Kim, J.; Lee, J. Bioorg. Med.
Chem. Lett. 2008, 18, 2385.
to rats, a Cmax of 0.03 lg/mL was obtained at 1.3 h with a moderate
systemic clearance rate of 12.6 mL/mg/Kg. The elimination half-life
for 16l following oral administration was 18.4 h in rats. 16l showed
relatively low oral bioavailability (F = 7.2%) in rats, implying its
probable solubility-limited absorption.
Table 3
Binding affinity of selected pentacycles to rCB1 and hCB2 receptorsa,b
c
c
Compound
rCB1 IC50
hCB2 IC50
hCB2/rCB1 selectivity
Rimonabant
16g
16l
5.0 1.0d
2.56
1.72
1760c
414
245
352
162
142
16t
16u
2.56
3.70
427
>10,000
167
>2703
a
b
c
rCB1 receptor was collected from brain tissue of SD rat.
hCB2 receptor was recombinant human receptor expressed in CHO cell.
These data were obtained by single determinations.
14. (a) Barth, F.; Congy, C.; Gueule, P.; Ridaldi-Carmona, M.; Van Brodeck, D. PCT
Patent WO 2006/087480 A1, 2006.; (b) Moritani, Y. PCT Patent WO 2007/
046550 A1, 2007.
d
This data was obtained by multiple determinations.