1H, Pyr-CH), 8.72 (t, 1H, Pyr-CH, 3JH-H = 7.88 Hz), 9.24 (d, 1H,
Pyr-CH, 3JH-H = 6.23 Hz). 13C NMR (100.5 MHz, acetone-d6): d
21.20 (Mes-p-CH3), 23.61 (Mes-o-CH3), 48.64 (pyr-CH3), 128.08,
129.24, 131.62, 135.86, 140.31, 140.79, 141.33, 141.54, 143.02,
146.43, 148.56, 150.28, 156.43. 11B NMR (128.2 MHz, acetone-
d6): d 68.4. 19F NMR (375.97 MHz, acetone-d6): d -77.6 (OTf).
Anal. Calcd for C29H31BNS2F3O3: C, 60.73; H, 5.45. Found: C,
60.89; H, 5.53.
a colorimetric turn-on response upon fluoride binding. This turn-
on response originates from an intramolecular charge transfer
band involving the fluoroborate moiety as a donor and the
pyridinium ring as the acceptor.
Acknowledgements
This work was supported by the National Science Foundation
(CHE-0646916), the Welch Foundation (A-1423), the Petroleum
Research Funds (Grant 44832-AC4) and the US Army Medical
Research Institute of Chemical Defense.
Generation of 3-F and 4-F
3-F and 4-F were prepared and characterized by multinuclear
NMR spectroscopy in situ by addition of TBAF to solutions
of [3]OTf and [4]OTf in acetone-d6. Data for 3-F: 1H NMR
(399.9 MHz, acetone-d6): d 1.94 (s, 12H, Mes-CH3), 2.08 (s, 6H,
Mes-CH3), 4.34 (s, 3H, N-CH3), 6.45 (s, 4H, Mes-CH), 7.10-
References
1 H. E. Katz, J. Org. Chem., 1985, 50, 5027–5032; H. E. Katz, J. Am.
Chem. Soc., 1985, 107, 1420–1421; H. Yamamoto, A. Ori, K. Ueda,
C. Dusemund and S. Shinkai, Chem. Commun., 1996, 407–408; C. R.
Cooper, N. Spencer and T. D. James, Chem. Commun., 1998, 1365–
1366; H. Shiratori, T. Ohno, K. Nozaki and A. Osuka, Chem. Commun.,
1999, 2181–2182; S. Yamaguchi, T. Shirasaka, S. Akiyama and K.
Tamao, J. Am. Chem. Soc., 2002, 124, 8816–8817; M. Miyata and Y.
Chujo, Polym. J., 2002, 34, 967–969; C. D. Entwistle and T. B. Marder,
Angew. Chem., Int. Ed., 2002, 41, 2927–2931; S. Yamaguchi, S. Akiyama
and K. Tamao, J. Organomet. Chem., 2002, 652, 3–9; Y. Kubo, M.
Yamamoto, M. Ikeda, M. Takeuchi, S. Shinkai, S. Yamaguchi and
K. Tamao, Angew. Chem., Int. Ed., 2003, 42, 2036–2040; S. Arimori,
M. G. Davidson, T. M. Fyles, T. G. Hibbert, T. D. James and G. I.
Kociok-Koehn, Chem. Commun., 2004, 1640–1641; C. D. Entwistle
and T. B. Marder, Chem. Mater., 2004, 16, 4574–4585; G. E. Herberich,
U. Englert, A. Fischer and D. Wiebelhaus, Eur. J. Inorg. Chem., 2004,
4011–4020; M. Mela¨ımi and F. P. Gabba¨ı, J. Am. Chem. Soc., 2005,
127, 9680–9681; M. Mela¨ımi and F. P. Gabba¨ı, Adv. Organomet. Chem.,
2005, 53, 61–99; T. Agou, J. Kobayashi and T. Kawashima, Org. Lett.,
2005, 7, 4373–4376; C. Bresner, S. Aldridge, I. A. Fallis, C. Jones and
L.-L. Ooi, Angew. Chem., Int. Ed., 2005, 44, 3606–3609; R. Badugu,
J. R. Lakowicz and C. D. Geddes, Curr. Anal. Chem., 2005, 1, 157–170;
R. Badugu, J. R. Lakowicz and C. D. Geddes, Sens. Actuators, B, 2005,
104, 103–110; Z.-Q. Liu, M. Shi, F.-Y. Li, Q. Fang, Z.-H. Chen, T. Yi
and C.-H. Huang, Org. Lett., 2005, 7, 5481–5484; S. J. M. Koskela,
T. M. Fyles and T. D. James, Chem. Commun., 2005, 945–947; F. Ja¨kle,
Boron: Organoboranes in Encyclopedia of Inorganic Chemistry, Wiley,
Chichester, 2005; I. H. A. Badr and M. E. Meyerhoff, J. Am. Chem.
Soc., 2005, 127, 5318–5319; H. Wang, S. Sole and F. P. Gabba¨ı, ACS
Symp. Ser., 2006, 917, 208–220; T. W. Hudnall, M. Mela¨ımi and F. P.
Gabba¨ı, Org. Lett., 2006, 8, 2747–2749; C. Bresner, J. K. Day, N. D.
Coombs, I. A. Fallis, S. Aldridge, S. J. Coles and M. B. Hursthouse,
Dalton Trans., 2006, 3660–3667; K. Parab, K. Venkatasubbaiah and
F. Ja¨kle, J. Am. Chem. Soc., 2006, 128, 12879–12885; T. Neumann, Y.
Dienes and T. Baumgartner, Org. Lett., 2006, 8, 495–497; E. Sakuda,
A. Funahashi and N. Kitamura, Inorg. Chem., 2006, 45, 10670–10677;
T. W. Hudnall, J. F. Bondi and F. P. Gabba¨ı, Main Group Chem., 2006,
5, 319–327; Z. Zhou, S. Xiao, J. Xu, Z. Liu, M. Shi, F. Li, T. Yi and C.
Huang, Org. Lett., 2006, 8, 3911–3914; Z. Zhou, H. Yang, M. Shi, S.
Xiao, F. Li, T. Yi and C. Huang, ChemPhysChem, 2007, 8, 1289–1292;
Z. Zhou, F. Li, T. Yi and C. Huang, Tetrahedron Lett., 2007, 48, 6633–
6636; S.-B. Zhao, T. McCormick and S. Wang, Inorg. Chem., 2007,
46, 10965–10967; R. Boshra, K. Venkatasubbaiah, A. Doshi, R. A.
Lalancette, L. Kakalis and F. Ja¨kle, Inorg. Chem., 2007, 46, 10174–
10186; W. Tan, D. Zhang, Z. Wang, C. Liu and D. Zhu, J. Mater.
Chem., 2007, 17, 1964–1968; Y. Cui, F. Li, Z.-H. Lu and S. Wang,
Dalton Trans., 2007, 2634–2643; K. Parab, K. Venkatasubbaiah, Y.
Qin and F. Ja¨kle, Polymer Preprints, 2007, 48, 699–700; J. K. Day, C.
Bresner, N. D. Coombs, I. A. Fallis, L.-L. Ooi and S. Aldridge, Inorg.
Chem., 2008, 47, 793–804; A. Kawachi, A. Tani, J. Shimada and Y.
Yamamoto, J. Am. Chem. Soc., 2008, 130, 4222–4223; C. L. Dorsey, P.
Jewula, T. W. Hudnall, J. D. Hoefelmeyer, T. J. Taylor, N. R. Honesty,
C.-W. Chiu, M. Schulte and F. P. Gabba¨ı, Dalton Trans., 2008, 4442–
4450; T. W. Hudnall and F. P. Gabba¨ı, Chem. Commun., 2008, 4596–
4597; Y. You and S. Y. Park, Adv. Mater., 2008, 20, 3820–3826; A. E. J.
Broomsgrove, D. A. Addy, C. Bresner, I. A. Fallis, A. L. Thompson and
S. Aldridge, Chem. Eur. J., 2008, 14, 7525–7529; D. Cao, Z. Liu and
3
7.30 (bm, 3H), 8.03-8.07 (m, 3H), 8.59 (t, JH-H = 8.06 Hz,
3
1H, Pyr-CH), 9.00 (d, JH-H = 6.05 Hz 1H, Pyr-CH). 13C NMR
(100.5 MHz, dmso-d6): d 20.56 (Mes-o-CH3), 24.90 (Mes-o-CH3),
46.96 (pyr-CH3), 125.34, 125.99, 126.35, 128.03, 129.72, 130.60,
133.51, 140.60, 144.81, 146.30, 154.12, 157.08, 169.42. 11B NMR
(128.2 MHz, acetone-d6): d 5.64. 19F NMR (375.97, MHz, acetone-
1
d6): d -176.0. Data for 4-F: H NMR (399.9 MHz, acetone-d6):
d 2.03 (s, 12H, Mes-CH3), 2.09 (s, 6H, Mes-CH3), 4.51 (s, 3H,
3
N-CH3), 6.47 (s, 4H, Mes-CH), 6.90 (d, JH-H = 3.48 Hz, 1H,
3
4
Thioph-CH), 7.66 (dd, JH-H = 3.66 Hz, JH-F = 2.56 Hz, 1H,
3
Thioph-CH), 7.74 (t, JH-H = 6.31 Hz, 1H, Pyr-CH), 8.18 (d,
3
3JH-H = 8.24 Hz, 1H, Pyr-CH), 8.36 (t, JH-H = 7.78 Hz, 1H,
3
Pyr-CH,), 8.81 (d, JH-H = 6.23 Hz 1H, Pyr-CH). 13C NMR
(100.5 MHz, acetone-d6): d 20.92 (Mes-p-CH3), 24.90 (Mes-
o-CH3), 48.67 (pyr-CH3), 120.68, 123.58, 123.88, 129.13, 129.39,
130.15, 131.44, 132.22, 135.62, 141.60, 144.28, 146.72, 152.38. 11
B
NMR (128.2 MHz, acetone-d6): d 4.93. 19F NMR (375.97, MHz,
acetone-d6): d -167.5.
Titration of [3]OTf and [4]OTf with fluoride in CHCl3
Solutions of [3]OTf (3.0 mL, 6.3 ¥ 10-5 M, CHCl3) and [4]OTf
(3.0 mL, 5.6 ¥ 10-5 M, CHCl3) were titrated with incremental
(5 mL) amounts of fluoride anions by addition of a 3.4 ¥ 10-3
M
solution of TBAF in CHCl3.
Biphasic fluoride capture
1H NMR spectra of solutions of [3]OTf and [4]OTf in CDCl3
(0.500 mL, 0.07 M) were collected after layering and shaking
with 0.125 mL (1 eq. F-) and/or 0.500 mL (4 eq. F-) of D2O
solutions containing TBAF or NaF (0.28 M). Conversion to the
fluoroborate species 3-F and 4-F was monitored by integration,
specifically the signals corresponding to the mesityl aromatic
CH groups which are shifted significantly upfield upon fluoride
binding.
Conclusion
In conclusion, we report the synthesis and structures of two
new cationic boranes. These new cationic boranes selectively bind
fluoride ions in organic solvents. These compounds are sufficiently
fluorophilic to capture fluoride ions under biphasic conditions in
H2O/CHCl3. In addition to being selective, these new boranes give
9174 | Dalton Trans., 2009, 9169–9175
This journal is
The Royal Society of Chemistry 2009
©