Angewandte
Chemie
silylation of the remaining arylmethyl ether with triethylsi-
lane and tris(pentafluorophenyl)borane furnished TES-pro-
tected phenol 28.[19] The ester was reduced with DIBAL-H to
give primary alcohol 29, which was directly activated for
displacement by conversion into the tosylate 30. When this
cyclization precursor was heated with TBAF it rapidly
underwent the alkylative cyclization in excellent yield to
form the platensimycin core 31. The 1H and 13C NMR spectra
of 31 are identical to those previously reported,[6e,f] thus
completing our formal synthesis of platensimycin.
In summary, we have developed a very efficient route to
the compact platensimycin core. Our architectural assembly
relied on the use of a new copper-catalyzed oxirane ring-
expansion in combination with an alkylative dearomatization
to complete the core. Other notable features of this synthetic
approach include an underutilized phenol ether deprotection,
nucleophilic enoate epoxidation, and a mild introduction of a
substituted alkyl ketone using a trifluoroborate cross-cou-
pling.
Received: June 19, 2009
Published online: October 1, 2009
This success inspired us to improve the synthetic approach
by starting with brominated anisaldehyde 32 rather than the
vanillin analogue 12 (Scheme 5). This approach would allow
Keywords: copper · natural products · oxiranes · platensimycin ·
total synthesis
.
[1] a) J. Wang, S. M. Soisson, K. Young, W. Shoop, S. Kodali, A.
Galgoci, R. Painter, G. Parthasarathy, Y. S. Tang, R. Cummings,
S. Ha, K. Dorso, M. Motyl, H. Jayasuriya, J. Ondeyka, K. Herath,
C. Zhang, L. Hernandez, J. Allocco, A. Basilio, J. R. Tormo, O.
Genilloud, F. Vicente, F. Pelaez, L. Colwell, S. H. Lee, B.
Michael, T. Felcetto, C. Gill, L. L. Silver, J. D. Hermes, K.
Bartizal, J. Barrett, D. Schmatz, J. W. Becker, D. Cully, S. B.
J. G. Ondeyka, K. B. Herath, C. Zhang, D. L. Zink, N. N. Tsou,
R. G. Ball, A. Basilio, O. Genilloud, M. T. Diez, F. Vicente, F.
K. Herath, C. Zhang, S. Kodali, A. Galgoci, R. Painter, B.
Brown-Driver, R. Yamamoto, L. L. Silver, Y. Zheng, J. I.
Ventura, J. Sigmund, S. Ha, A. Basilo, F. Vicente, J. R. Tormo,
F. Pelaez, P. Youngman, D. Cully, J. F. Barret, D. Schmatz, S. B.
526. For a review on antibiotics including platensimycin, see:
K. C. Nicolaou, J. S. Chen, D. J. Edmonds, A. A. Estrada, Angew.
[3] a) K. B. Herath, C. Zhang, H. Jayasuriya, J. G. Ondeyka, D. L.
1702; b) H. Jayasuriya, K. B. Herath, J. G. Ondeyka, D. L. Zink,
3648 – 3651; c) C. Zhang, J. Ondeyka, D. L. Zink, B. Burgess, J.
Scheme 5. Efficient synthesis of the platensimycin core. ruphos=2-
dicyclohexylphosphino-2’,6’-diisopropoxylbiphenyl.
us to alleviate the steps associated with the late stage
deoxygenation necessary in Scheme 4. To that end, commer-
cially available bromide 32 was converted into 34, using the
cross-coupling strategy reported by Molander and Petrillo, to
directly install the requisite ketone chain.[20] This keto
aldehyde cleanly underwent the analogous condensation,
triflate formation, and carbonylation using the previously
optimized conditions to give 36. Nucleophilic epoxidation
with trityl hydroperoxide allowed access to vinyl oxirane 37,
which subsequently ring-expanded to oxatropane 38 when
subjected to our [Cu(hfacac)2] conditions. Substrate-control-
led reduction afforded primary alcohol 39 which was con-
verted into the tosylate and again hydrosilated to give TES-
protected phenol 30. The platensimycin core 31 was again
accessed by alkylative dearomatization, this time completing
the formal synthesis in only ten steps from commercially
available precursor 32.
[4] M. J. Smanski, R. M. Peterson, S. R. Rajski, B. Shen, Antimicrob.
b) K. C. Nicolaou, D. J. Edmonds, A. Li, G. S. Tria, Angew.
3942 – 3945; c) K. C. Nicolaou, D. Pappo, K. Y. Tsang, R. Gibe,
[6] a) Y. Zou, C.-H. Chen, C. D. Taylor, B. M. Foxman, B. B. Snider,
Yamamoto, J. Am. Chem. Soc. 2007, 129, 953 – 954; c) A. K.
Angew. Chem. Int. Ed. 2009, 48, 8543 –8546
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
8545