Ferroelectric Dimesogens for Second-Order NLO
A R T I C L E S
Chart 1. H-Shaped FLC Compounds (Chromophores in Blue)
Scheme 1. Synthesis of H-Shaped FLC Compounds 1a-e
Incorporating an Azobenzene Chromophorea
a Reagents and conditions: (a) (-)-R-2-octanol, PPh3, DEAD, THF. (b)
Pd(OH)2/C, H2. (c) 3, HCl, NaNO2; then 4, K2CO3, H2O/EtOH.8 (d) BuNH2,
benzene.9 (e) 4′-Alkoxy-4-biphenylcarboxylic acid chlorides, DMAP, Et3N,
THF. Bn ) benzyl, Bz ) benzoyl.
Scheme 2. Synthesis of H-Shaped FLC Compounds 2a-c
Incorporating a DR-1 Chromophorea
compounds have been reported,6 none, with the exception of a
main-chain polymer6b derived from one of these compounds,
exhibits the desired thermodynamically stable enantiotropic
SmC*, i.e., ferroelectric, phase which is indispensable to
applications of FLCs in nonlinear optics.
Herein, we first report two classes of laterally azo-bridged
H-shaped FLCs, 1a-e and 2a-c (Chart 1), that exhibit a
ground-state, thermodynamically stable enantiotropic SmC*
phase, i.e., ground-state ferroelectricity. Compounds 1a-e
include a conjugated azo linkage, while 2a-c are incorporated
into a DR-1 chromophore. Second harmonic generation (SHG)
measurements show that the extrapolated d22 coefficient of the
second-order susceptibility tensor for 2c is 17 pm/V, the largest
NLO coefficient reported to date for calamitic NLO FLCs. It
should be noted that chromophores in these materials can be
a Reagents and conditions: (a) CH3CHO, Na(AcO)3BH, ClCH2CH2Cl.10
(b) LiOH, EtOH, H2O. (c) 7, HCl, NaNO2, EtOH/H2O; then 6, pyridine,
CH2Cl2, EtOH. (d) 4′-Alkoxy-4-biphenylcarboxylic acid chlorides, DMAP,
Et3N, THF.
Tg), which requires NLO chromophores to possess excellent
thermal and chemical stability.1c,7
readily oriented by a weak electric field (0.1-0.5 V µm-1
)
parallel to the cell surface of a homeotropically aligned cell. In
contrast, the poling process for poled polymers generally
requires a much stronger electric field (10-50 V µm-1) at high
temperature (above the polymer glass-transition temperature,
Results and Discussion
Synthesis. The syntheses of two types of compounds, 1a-e
and 2a-c, are outlined in Schemes 1 and 2, respectively (see
detailed synthetic procedures and analytic data in the Supporting
Information). To prepare compounds 1, two precursors for diazo
coupling reactions, 3 and 4, were synthesized from 4-benzy-
loxyphenol by a literature6a approach (for 3) and a two-step
approach (for 4) involving Mitsunobu reaction and benzyl
deprotection via hydrogenolysis. Subsequent diazo coupling,8
followed by aminolysis of the resulted ester under mild
conditions,9 afforded diphenol 5 in excellent yield. Esterification
of 5 with a variety of 4′-alkoxy-4-biphenylcarboxylic acid
chlorides generated the final mesogens 1a-e in moderate to
good yields (Scheme 1). As shown in Scheme 2, the final
mesogens 2a-c were synthesized from aniline 3 in a multistep
approach similar similar to that used for 1a-e. Two precursors
for diazo coupling reactions, 6 and 7, were prepared by a two-
step approach involving reductive amination10 and hydrolysis
(4) (a) Walba, D. M.; Ros, M. B.; Clark, N. A.; Shao, R.; Robinson, M. G.;
Liu, J. Y.; Johnson, K. M.; Doroski, D. J. J. Am. Chem. Soc. 1991,
113, 5472. (b) Trollsås, M.; Orrenius, C.; Sahle´n, F.; Gedde, U. W.;
Norin, T.; Hult, A.; Hermann, D.; Rudquist, P.; Komitov, L.;
Lagerwall, S. T.; Lindstro¨m, J. J. Am. Chem. Soc. 1996, 118, 8542.
(c) Dubois, J.-C.; Barny, P. L.; Mauzac, M.; Noel, C. In Handbook of
Liquid Crystals; Demus, D., Goodby, J. W., Gray, G. W., Spiess,
H. W., Vill, V., Eds.; Wiley-VCH: Weinheim, Germany, 1998; Vol.
3, p 207. (d) Artal, C.; Ros, M. B.; Serrano, J. L.; Pereda, N.;
Etxebarria, J.; Folcia, C. L.; Ortega, J. Macromolecules 2001, 34, 4244.
(e) Keller, P.; Shao, R.; Walba, D. M.; Brunet, M. Liq. Cryst. 1995,
18, 915. (f) Walba, D. M.; Keller, P.; Shao, R.; Clark, N. A.; Hillmyer,
M.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 2740. (g) Fazio,
V. S. U.; Lagerwall, S. T.; Zauls, V.; Schrader, S.; Busson, P.; Hult,
A.; Motschmann, H. Eur. Phys. J. E 2000, 3, 245. (h) Kapitza, H.;
Zentel, R.; Twieg, R. J.; Nguyen, C.; Vallerien, S. U.; Kremer, L. F.;
Wilson, C. G. AdV. Mater. 1990, 2, 539. (i) Espinet, P.; Etxebarria,
J.; Folcia, C. L.; Ortega, J.; Ros, M. B.; Serrano, J. L. AdV. Mater.
1996, 8, 745.
(5) (a) Ikeda, T.; Sasaki, T.; Ichimura, K. Nature 1993, 361, 428. (b)
Sasaki, T.; Ikeda, T.; Ichimura, K. J. Am. Chem. Soc. 1994, 116, 625.
(6) (a) Walba, D. M.; Dyer, D. J.; Sierra, T.; Cobben, P. L.; Shao, R.;
Clark, N. A. J. Am. Chem. Soc. 1996, 118, 1211. (b) Walba, D. M.;
Xiao, L.; Keller, P.; Shao, R.; Link, D.; Clark, N. A. Pure Appl. Chem.
1999, 71, 2117. (c) Walba, D. M.; Xiao, L.; Korblova, E.; Keller, P.;
Shoemaker, R.; Nakata, M.; Shao, R.; Link, D. R.; Coleman, D. A.;
Clark, N. A. Ferroelectrics 2004, 309, 77.
(7) Wu, X.; Wu, J.; Liu, Y.; Jen, A. K.-Y. J. Am. Chem. Soc. 1999, 121,
472.
(8) Haghbeen, K.; Tan, E. W. J. Org. Chem. 1998, 63, 4503. Note that
14 g of K2CO3 should be used instead of 1.4 g mentioned in the
experimental procedure of this reference.
(9) Bell, K. H. Tetrahedron Lett. 1986, 2263.
(10) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.;
Shah, R. D. J. Org. Chem. 1996, 61, 3849.
9
J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009 18387