point (BCP) show that the Ge–C bonds in compound 2,
[H2CQGeQCH2] and [H3C–GeH2–CH3] are polar and
covalent (Table 1). The bond nature of the Ge–C bonds in
compound 2 is in-between that of GeQC in [H2CQGeQCH2]
and that of Ge–C in [H3C–GeH2–CH3]. As there may be
substantive p-electron delocalization along the Ge–C bonds
in compound 2, it is unsurprising to find that the Ge–C bonds
in compound 2 may have little double bond character compared
with the GeQC bond in [H2CQGeQCH2]. Fig. 3(a)–(c)
depict the Laplacian distributions in the GeCH planes of
[CH3–GeH2–CH3] and [CH2QGeQCH2] and in the GeCS
plane of compound 2, respectively. It reveals that the bonding
nature of the GeQC bond in [CH2QGeQCH2] and in
compound 2 are similar.
5 For
a
Organometallics, 2007, 26, 1542.
review, see: J. Escudie
´
and H. Ranaivonjatovo,
6 (a) B. E. Eichler, D. R. Powell and R. West, Organometallics, 1998,
17, 2147; (b) N. Tokitoh, K. Kishikawa and R. Okazaki,
Chem. Lett., 1998, 811.
7 (a) N. Sigal and Y. Apeloig, Organometallics, 2002, 21, 5486;
(b) M. Alam Sk, H.-W. Xi and K. H. Lim, Organometallics,
2009, 28, 3678.
8 Methyllithium (2.05 mL, 1.6 M in diethyl ether, 3.28 mmol) was
added to a solution of 1 (0.699 g, 1.56 mmol) in toluene (10 mL) at
ꢀ78 1C. The resulting mixture was warmed to room temperature
and stirred for 3 h. GeCl4 (0.089 mL, 0.780 mmol) was added
dropwise to the reaction mixture at ꢀ78 1C. The resulting white
suspension was warmed to room temperature and stirred
overnight. Volatiles in the mixture were removed under reduced
pressure and the residue was extracted with CH2Cl2. The solution
was filtered off. CH2Cl2 was removed under reduced pressure
and the residue was extracted with THF. After filtration and
concentration of the filtrate, 2 was obtained as colorless crystals.
Yield: 1.07g (71%).
In conclusion, the first example of
a germanium
bismethanediide compound, 2, has been synthesized successfully
by the reaction of 1 with two equivalents of MeLi in toluene,
followed by reaction with 0.5 equivalents of GeCl4. X-Ray
crystallography shows that the Ge–C bonds in compound 2
have double bond character. DFT calculations show that the
coordination of the sulfur donors with the germanium atom in 2
leads to the delocalization of p-electrons, which lengthens the
GeQC double bond distance. Topological analysis of the electron
densities shows that the Ge–C bonds in 2 are polar and covalent
and their bond nature is between a single and double bond.
This work is supported by the Ministry of Education,
Singapore (AcRF Tier 1, RG 47/08) and by a Strategic
Research Grant from City University of Hong Kong
(Project No. 7002285).
9 K. Aparna, R. P. Kamalesh Babu, R. McDonald and R. G. Cavell,
Angew. Chem., Int. Ed., 2001, 40, 4400.
´
10 T. Cantat, F. Jaroschik, F. Nief, L. Ricard, N. Mezailles and
P. Le Floch, Chem. Commun., 2005, 5178.
11 Mp 245 1C. Elemental analysis found (%): C 62.06; H 4.07. Calcd.
for C50H40GeP4S4: C 62.19; H 4.18. 1H NMR (d8-THF, 25 1C):
d = 7.15–7.20 (m, 7H, Ph), 7.33–7.37 (m, 5H, Ph), 7.66–7.71 ppm
(m, 8H, Ph). 13C{1H} NMR (d8-THF, 25 1C): d = 128.6, 128.7,
128.8, 131.8, 133.2, 133.3, 133.4, 135.3, 136.2 ppm (Ph). 31P{1H}
NMR (d8-THF, 25 1C): d = 33.7 ppm. 31P CP/MAS NMR
(25 1C): d = 4.72 (br s), 6.05 ppm (br s).
´
12 T. Cantat, N. Mezailles, L. Ricard, Y. Jean and P. Le Floch,
Angew. Chem., Int. Ed., 2004, 43, 6382.
13 T. Cantat, F. Jaroschik, L. Ricard, P. Le Floch, F. Nief and
N. Me
14 Crystal data for 2ꢂ(THF)2: [C58H56GeO2P4S4], M = 1109.74,
orthorhombic, space group Pccn, 23.5445(9),
11.4051(5), c = 19.7011(7) A, a = 90, b = 90, g = 901, V =
´
zailles, Organometallics, 2006, 25, 1329.
a
=
b =
Notes and references
5290.3(4) A3, Z = 4, T = 173(2) K, Dc = 1.393 Mg mꢀ3
,
m = 0.901 mmꢀ1, 74 919 measured reflections, 10 186 independent
reflections, 358 refined parameters, R1 = 0.0379, wR2 = 0.0978
(I 4 2s(I)). CCDC 735370.
1 (a) A. G. Brook and M. A. Brook, Adv. Organomet. Chem., 1996,
39, 71; (b) J. Escudie
Chem. Rev., 1998, 178, 565; (c) M. A. Chaubon,
H. Ranaivonjatovo, J. Escudie and J. Satge, Main Group Met.
Chem., 1996, 19, 145; (d) K. M. Baines and W. G. Stibbs, Adv.
Organomet. Chem., 1996, 39, 275; (e) J. Barrau, J. Escudie and
J. Satge, Chem. Rev., 1990, 90, 283.
´
, C. Couret and H. Ranaivonjatovo, Coord.
15 W.-P. Leung, Z.-X. Wang, H.-W. Li and T. C. W. Mak, Angew.
´
´
Chem., Int. Ed., 2001, 40, 2501.
´
16 T. Cantat, L. Ricard, N. Mezailles and P. Le Floch, Organo-
metallics, 2006, 25, 6030.
´
´
17 (a) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter
Mater. Phys., 1988, 37, 785; (b) B. Miehlich, A. Savin, H. Stoll and
H. Preuss, Chem. Phys. Lett., 1989, 157, 200; (c) S. H. Vosko,
L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200;
(d) A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
2 (a) A. G. Brook, S. C. Nyburg, F. Abdesaken, B. Gutekunst,
G. Gutekunst, R. Krishna, M. R. Kallury, Y. C. Poon,
Y.-M. Chang and W. Wong-Ng, J. Am. Chem. Soc., 1982, 104,
5667; (b) N. Wiberg and C.-K. Kim, Chem. Ber., 1986, 119, 2966.
3 (a) H. Meyer, G. Baum, W. Massa and A. Berndt, Angew. Chem.,
18 M. J. Frisch, et al., Gaussian 03, Revision D.01, Gaussian, Inc.,
Wallingford CT, 2004. (See ESIw for complete citation).
19 (a) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys.,
1972, 56, 2257; (b) M. M. Francl, W. J. Petro, W. J. Hehre,
J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople,
J. Chem. Phys., 1982, 77, 3654; (c) V. A. Rassolov, M. A. Ratner,
J. A. Pople, P. C. Redfern and L. A. Curtiss, J. Comput. Chem.,
2001, 22, 976.
Int. Ed. Engl., 1987, 26, 798; (b) M. Lazraq, J. Escudie
J. Satge, M. Drager and R. Dammel, Angew. Chem., Int. Ed. Engl.,
1988, 27, 828.
´
, C. Couret,
´
¨
4 (a) H. Meyer, G. Baum, W. Massa, S. Berger and A. Berndt,
Angew. Chem., Int. Ed. Engl., 1987, 26, 546; (b) G. Anselme,
´
J.-P. Declercq, A. Dubourg, H. Ranaivonjatovo, J. Escudie and
C. Couret, J. Organomet. Chem., 1993, 458, 49;
(c) M. Weidenbruch, H. Kilian, M. Sturmann, S. Pohl, W. Saak,
¨
20 (a) J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102,
7211; (b) A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83,
1736; (c) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev.,
1988, 88, 899.
21 R. F. W. Bader, Atoms in Molecules—A Quantum Theory, Oxford
University Press, New York, 1990.
H. Marsmann, D. Steiner and A. Berndt, J. Organomet. Chem.,
1997, 530, 255; (d) Y. Mizuhata, N. Takeda, T. Sasamori and
N. Tokitoh, Chem. Commun., 2005, 5876; (e) Y. Mizuhata,
T. Sasamori, N. Takeda and N. Tokitoh, J. Am. Chem. Soc.,
2006, 128, 1050; (f) D. Ghereg, H. Ranaivonjatovo, N. Saffon,
H. Gornitzka and J. Escudie, Organometallics, 2009, 28, 2294.
´
ꢁc
This journal is The Royal Society of Chemistry 2009
6818 | Chem. Commun., 2009, 6816–6818