Regioselective Metalation of 6-Methylpurines
655
(18H, 6s, tert-BuSiMe2); Anal. Calcd. for C29H25N4O4Si3F; C 55.55, H 8.84;
N 8.94, found C 55.38, H 8.65, N 8.97.
6-Fluoromethyl-9-(β-D-ribofuranosyl)purine (4)
Solid Et4NF·x H2O (1.2 g, 7.97 mmol) was added to a solution of 23
(1, 1.59 mmol) in CH3CN (10 mL) at room temperature. The mixture was
stirred for 2 hours and the solvent was evaporated under reduced pressure.
The residue was purified by a flash silica gel column (eluate; 10% EtOH in
CHCl3) to give (430 mg, 95%) of 4 as a white solid: m.p. 185–187◦C; MS m/z
285 (M+1)+; UV λmax (pH 1) 268.3, λmax (pH 7) 264.2, λmax (pH 13).264.7;
1H NMR (DMSO-d6) δ 8.99 (1H, s, H-2, 1J C,H = 206.3 Hz), 8.91 (1H, s, H-8,
1J C,H = 215.9 Hz), 6.07 (1H, d, H-1ꢁ, J = 5.5 Hz), 5.86 (2H, d, 6-CH2a,bF, J H,F
= 46.6 Hz), 5.58 (1H, d, 2ꢁ-OH, J = 5.9 Hz), 5.28 (1H, d, 3ꢁ-OH, J = 4.9 Hz),
5.12 (1H, t, 5ꢁ-OH, J = 5.3 Hz), 4.64 (1H, ddd, H-2ꢁ, J 1 ,2 = 5.5, J 2 ,3 = 5,
ꢁ
ꢁ
ꢁ
ꢁ
J 2 ,2 OH = 5.9 Hz), 4.20 (1H, q, H-3ꢁ, J 2 ,3 = 5.0, J 3 ,4 = 3.6, J 3 ,3 OH = 4.9 Hz),
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
3.99 (1H, q, H-4ꢁ, J 3 ,4 = 3.6, J 4 ,5 a, = 4.1, J 4 ,5 a = 4.0 Hz), 3.70 (1H, ddd,
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
H-5ꢁa, J 4 ,5 a = 4.0, J 5 a, 5 -OH = 5.3, J 5 a,5 b = 11.9 Hz), 3.59 (1H, ddd, H-5ꢁb,
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
J 4 ,5 b = 4.1, J 5 b, 5 -OH = 5.8, J 5 a,5 b = 11.9 Hz), 13C NMR (DMSO-d6) δ 153.42
(C-6), 151.88 (C-2), 151.56 (C-4), 145.55 (C-8), 131.75 (C-5), 87.72 (C-1ꢁ),
85.72 (C-4ꢁ), 80.52 (1J CF = 167.0 Hz), 73.78 (C-2ꢁ), 70.24 (C-3ꢁ), 61.18 (C-5ꢁ);
Anal. Calcd. for C11H13N4O4F, C 46.48, H 4.61, N 19.71; found C 46.38, H
4.62, N 19.66.
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
REFERENCES
1. Sorscher, E. J.; Peng, S.; Bebok, Z.; Allan, P.W.; Bennett, L.L. Jr.; Parker, W.B. Tumor cell bystander
killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene
Ther. 1994, 1, 233–238.
2. Parker, W.B.; King, S.; Allan, P.W.; Bennett, L.L. Jr.; Secrist, J.A. III; et al. In vivo gene therapy of
cancer with E. coli purine nucleoside phosphorylase. Human Gene Ther. 1997, 8, 1637–1644.
3. Gadi, V.K.; Alexander, S.D.; Kudlow, J.E.; Allan, P.; Parker, W.B.; Sorscher, E.J. In vivo sensitization
of ovarian tumors to chemotherapy by expression of E. coli purine nucleoside phosphorylase in a
small fraction of cells. Gene Ther. 2000, 7, 1738–1743.
4. Parker, W.B.; Allan, P.W.; Shaddix, S.C.; Rose, L.M.; Speegle, H.F.; et al. Metabolism and metabolic
actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem. Pharmacol. 1998, 55,
1673–1681.
5. Hughes, B.W.; King, S.A.; Allan, P.W.; Parker, W.B.; Sorscher, E.J. Cell to cell contact is not required
for bystander cell killing by Escherichia coli purine nucleoside phosphorylase. J. Biol. Chem. 1998, 273,
2322–2328.
6. Parker, W.B.; Allan, P.W.; Hassan, A.E.A.; Secrist, J.A. III, Sorscher, E.J.; Waud, W.R. Antitumor
activity of 2-fluoro-2ꢁ-deoxyadenosine against tumors that express Escherichia coli purine nucleoside
phosphorylase. Cancer Gene Ther. 2003, 10, 23–29.
7. Zimmerman, T.P.; Gersten, N.B.; Ross, A.F.; Miech, R.P. Adenine as substrate for purine nucleoside
phosphorylase. Can J Biochem. 1971, 49, 1050–1054.
8. Jensen, K.F.; Nygaard, P. Purine nucleoside phosphorylase from Escherichia coli and Salmonella
typhimurium. Eur. J. Biochem. 1975, 51, 253–265.
9. Anderson, V.R.; Perry, C.M. Fludarabine: A review of its use in non-Hodgkin’s lymphoma. Drugs
2007, 67, 1633–1655.