ORGANIC
LETTERS
2013
Vol. 15, No. 23
6002–6005
2‑Pyridonate Titanium Complexes
for Chemoselectivity. Accessing
Intramolecular Hydroaminoalkylation
over Hydroamination
Eugene Chong and Laurel L. Schafer*
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada V6T 1Z1
Received October 7, 2013
ABSTRACT
Chemoselectivity of intramolecular hydroaminoalkylation over hydroamination has been achieved with a bis(3-phenyl-2-pyridonate) titanium
complex. Primary aminoalkenes are selectively R-alkylated by CÀH functionalization adjacent to nitrogen to access five- and six-membered
cycloalkylamines with a good substrate-dependent diastereoselectivity of up to 19:1.
The development of efficient synthetic routes to amines
is highly desired due to their prevalence in biologically
active compounds and a vast majority of drugs. An emerg-
ing catalytic CÀH functionalization method to access
higher substituted amines is hydroaminoalkylation,1 the
addition of an sp3-hybridized R-CÀH bond adjacent to
nitrogen across a CdC bond (Scheme 1). This atom-
economic CÀC bond forming reaction has been observed
as an unexpected byproduct2 of intramolecular hydroami-
nation,3 a CÀN bond forming reaction from the addition
of an NÀH bond across a CdC bond. Both early (groups 4
and 5)2,4À6 and late (Ir and Ru)7 transition metal catalysts
are able to catalyze the CÀC bond forming reaction. The
usage of early transition metals2,4À6 could be advanta-
geous due to their low toxicity and cost and the fact that
unprotected amines can be used as substrates.8
(6) For group 5 metal catalysts, see: (a) Clerici, M. G.; Maspero, F.
Synthesis 1980, 305. (b) Nugent, W. A.; Ovenall, D. W.; Holmes, S. J.
Organometallics 1983, 2, 161. (c) Herzon, S. B.; Hartwig, J. F. J. Am.
Chem. Soc. 2007, 129, 6690. (d) Herzon, S. B.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 14940. (e) Eisenberger, P.; Ayinla, R. O.; Lauzon,
J. M. P.; Schafer, L. L. Angew. Chem., Int. Ed. 2009, 48, 8361. (f)
Eisenberger, P.; Schafer, L. L. Pure Appl. Chem. 2010, 82, 1503. (g) Zi,
G.; Zhang, F.; Song, H. Chem. Commun. 2010, 46, 6296. (h) Zhang, F.;
Song, H.; Zi, G. Dalton Trans. 2011, 40, 1547. (i) Reznichenko, A. L.;
€
Emge, T. J.; Audorsch, S.; Klauber, E. G.; Hultzsch, K. C.; Schmidt, B.
Organometallics 2011, 30, 921. (j) Reznichenko, A. L.; Hultzsch, K. C. J.
Am. Chem. Soc. 2012, 134, 3300. (k) Payne, P. R.; Garcia, P.; Eisenber-
ger, P.; Yim, J. C.-H.; Schafer, L. L. Org. Lett. 2013, 15, 2182. (l) Garcia,
P.; Payne, P. R.; Chong, E.; Webster, R. L.; Barron, B. J.; Behrle, A. C.;
Schmidt, J. A. R.; Schafer, L. L. Tetrahedron 2013, 69, 5737. (m) Garcia,
P.; Lau, Y. Y.; Perry, M. R.; Schafer, L. L. Angew. Chem., Int. Ed. 2013,
52, 9144. (n) Zhang, Z.; Hamel, J.-D.; Schafer, L. L. Chem.;Eur. J.
2013, 19, 8751.
(1) For a review of hydroaminoalkylation, see: Roesky, P. W. Angew.
Chem., Int. Ed. 2009, 48, 4892.
€
(2) Muller, C.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2008, 2731.
€
(3) For a review of hydroamination, see Muller, T. E.; Hultzsch,
K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795 and
references therein.
€
(4) For Ti catalysts, see: (a) Prochnow, I.; Zark, P.; Muller, T.; Doye,
S. Angew. Chem., Int. Ed. 2011, 50, 6401. (b) Kubiak, R.; Prochnow, I.;
Doye, S. Angew. Chem., Int. Ed. 2009, 48, 1153. (c) Prochnow, I.;
Kubiak, R.; Frey, O. N.; Beckhaus, R.; Doye, S. ChemCatChem 2009,
1, 162. (d) Kubiak, R.; Prochnow, I.; Doye, S. Angew. Chem., Int. Ed.
2010, 49, 2626. (e) Jaspers, D.; Saak, W.; Doye, S. Synlett 2012, 23, 2098.
(f) Dorfler, J.; Doye, S. Angew. Chem., Int. Ed. 2013, 52, 1806. (g) Preuss,
T.; Saak, W.; Doye, S. Chem.;Eur. J. 2013, 19, 3833.
(5) For a Zr catalyst, see: Bexrud, J. A.; Eisenberger, P.; Leitch, D. C.;
(7) For Ru and Ir catalysts, see: (a) Jun, C.-H.; Hwang, D.-C.; Na,
S.-J. Chem. Commun. 1998, 1405. (b) Chatani, N.; Asaumi, T.; Yor-
imitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001,
123, 10935. (c) Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2011, 13, 4692.
ꢀ
(d) Bergman, S. D.; Storr, T. E.; Prokopcova, H.; Aelvoet, K.; Diels, G.;
€
Meerpoel, L.; Maes, B. U. W. Chem.;Eur. J. 2013, 18, 10393. (e) Pan,
S.; Matsuo, Y.; Endo, K.; Shibata, T. Tetrahedron 2012, 68, 9009.
(8) Pyridyl-substitution on the amine is required as a directing group
for late transition metal examples.
Payne, P. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 2116.
r
10.1021/ol402890m
Published on Web 11/13/2013
2013 American Chemical Society