C O M M U N I C A T I O N S
Scheme 1. Transformation of Allylated Adduct 4a into Valuable
Compound
also played a role in the reaction. When the acetyl group of 3a was
replaced by H or Boc, the ee of both recovered substrates and allylated
products decreased greatly (entries 14, 15 vs 13). The screen of solvents
and bases revealed that THF and LiHMDS were the best choice (not
showed in Table 1 but see Supporting Information).
Table 2. Substrate Scope for the Kinetic Resolution of
2,3-Dihydro-2-substituted 4-Quinolonesa
3
4
entry
substrate
yield%b
ee (%)c
yield%b
ee (%)c
Sd
of Pd-catalyzed AAA in organic synthesis. Studies on the extension
of the protocol to other carbon nucleophiles and applications of the
aforementioned procedure in organic synthesis are in progress.
1
2
3
3a
3b
3c
3d
3e
3f
3g
3h
3i
45
43
44
44
46
42
47
46
46
41
37
99
99
96
98
99
99
99
99
99
93
87
48
38
47
42
38
48
49
49
46
37
46
93
83
91
93
90
91
93
91
90
89
87
145
56
83
127
99
111
145
111
99
4
5e
6
Acknowledgment. Financially supported by the Major Basic
Research Development Program (2006CB806100), National Natural
Science Foundation of China (20532050, 20872161, 20821002),
Chinese Academy of Sciences, Croucher Foundation of Hong Kong,
and Shanghai Committee of Science and Technology.
7
8
9
10
3j
3k
58
40
11f
Supporting Information Available: General procedure for kinetic
resolution, spectral data for 3a-3k and 4a-4k, and X-ray analysis
data of 4c and 6 (cif file). This material is available free of charge via
a Reaction conditions: 3/2c/[Pd(C3H5)Cl]2/L4/base ) 100:200:6:12:200,
0.05 M of 3 in THF at -50 °C. b Isolated yield. c Determined by chiral
d
HPLC. Calculated by the method describe by Kagan.1a e d.r. of 4e is
13/1. f d.r. of 4k is 5/1.
The substrate scope was examined, and the results were compiled
in Table 2 under the above optimized conditions. Generally, the
reactions provided allylated products 4 with trans-stereoselectivity
in 37-49% yields and 83-93% ee accompanied with 37-47%
yields of recovered starting materials in 87-99% ee (S-factor is
40-145). The substituents on both the 2,3-dihydro-4-quinolone core
and 2-phenyl group had limited effect on the enantioselectivity of
recovered 3 as its ee was consistently excellent (entries 1-9). The
substituents on the 2-phenyl group exerted some impact on the
selectivity of allylated products 4. When the substituent was at
the ortho-position of the 2-phenyl group, the stereoselectivity is
slightly low, giving 4b in 83% ee and 38% yield, presumably due
to the steric hindrance (entry 2). While either an electron-donating
or -withdrawing group was at the meta- and para-position of the
2-phenyl group, allylated products 4 were furnished with excellent
ee (entries 3-9). Notably, the reaction of 2-alkyl-2,3-dihydro-4-
quinolones gave excellent enantioselectivity (entries 10 and 11),
while the diastereoselectivity of 4k decreased to 5/1 (entry 11).
This kinetic resolution proceeded even on gram-scale under mild
conditions with high efficiency. Treatment of 1.17 g of 3a with
0.43 g of 2c under the above conditions still furnished a 44% yield
of 4a in 93% ee and 46% yield of 3a in 99% ee.
References
(1) For some reviews: (a) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988,
18, 249. (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. AdV. Synth. Catal.
2001, 343, 5. (c) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284. (d)
Robinson, D. E. J. E.; Bull, S. D. Tetrahedron: Asymmetry 2003, 14, 1407.
(e) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
(2) For some examples of creating new chiral center via kinetic resolution: (a)
Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless,
K. B. J. Am. Chem. Soc. 1981, 103, 6237. (b) Ohkuma, T.; Koizumi, M.;
Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124,
6508. (c) Naasz, R.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Angew.
Chem., Int. Ed. 2001, 40, 927. (d) Jurkauskas, V.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 2892. (e) Sua´rez, A.; Downey, C. W.; Fu, G. C. J. Am.
Chem. Soc. 2005, 127, 11244.
(3) For some reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996,
96, 395. (b) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
(4) (a) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759. (b)
Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
(c) Weiss, T. D.; Helmchen, G.; Kazmaier, U. Chem. Commun. 2002, 1270.
(d) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044. (e)
Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113. (f) Trost, B. M.; Xu, J.;
´
Reichle, M. J. Am. Chem. Soc. 2007, 129, 282. (g) Be´langer, E; Cantin, K.;
Messe, O.; Tremblay, M.; Paquin, J.-F. J. Am. Chem. Soc. 2007, 129, 1034.
(h) Deska, J.; Kazmaier, U. Angew. Chem., Int. Ed. 2007, 46, 4570. (i) Trost,
B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056.
(5) (a) Yan, X. X.; Liang, C. G.; Zhang, Y.; Hong, W.; Cao, B. X.; Dai, L.-X.;
Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544. (b) Zheng, W. H.; Zheng,
B. H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718. (c) Zhang,
K.; Peng, Q.; Hou, X.-L.; Wu, Y. D. Angew. Chem., Int. Ed. 2008, 47, 1741.
(d) Liu, W.; Chen, D.; Zhu, X.-Z.; Wan, X.-L.; Hou, X.-L. J. Am. Chem.
Soc. 2009, 131, 8734.
The absolute configuration of the recovered 2,3-dihydro-2-
phenyl-4-quinolone 3a was determined as (S) by removing its acetyl
group under basic conditions and comparing the sign of the optical
rotation of the product with that reported by literature.10 Accord-
ingly, the allylated 4a has the (2R,3S) configuration.
Allylated product 4a was easily converted into pyrrolo[3,2-
c]quinoline 6 without the loss of optical activity through ozonolysis
and reduction followed by reductive amination. It is noticeable that
compound 6 is the core structure of biologically active Martinella
alkaloids11a and reported compounds having tachykinin receptor
antagonistic activity.11b Its structure was unequivocally confirmed
by its X-ray diffraction analysis, which also provides evidence to
support the trans-stereochemistry of 4a.
(6) (a) Hayashi, T.; Yamamoto, A.; Ito, Y. J. Chem. Soc., Chem. Commun. 1986,
1090. (b) Choi, Y. K.; Suh, J. H.; Lee, D.; Lim, I. T.; Jung, J. Y.; Kim, M. J.
J. Org. Chem. 1999, 64, 8423. (c) Reetz, M. T.; Sostmann, S. J. Organomet.
Chem. 2000, 603, 105. (d) Longmire, J. M.; Wang, B.; Zhang, X. Tetrahedron
Lett. 2000, 41, 5435. (e) Gilbertson, S. R.; Lan, P. Org. Lett. 2001, 3, 2237.
(f) Hughes, D. L.; Palucki, M.; Yasuda, N.; Reamer, R. A.; Reider, P. J. J.
Org. Chem. 2002, 67, 2762. (g) Lüssem, B. J.; Gais, H.-J. J. Am. Chem.
Soc. 2003, 125, 6066. (h) Faller, J. W.; Wilt, J. C.; Parr, J. Org. Lett. 2004,
6, 1301. (i) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am.
Chem. Soc. 2004, 126, 1628. (j) Onitsuka, K.; Matsushima, Y.; Takahashi,
S. Organometallics 2005, 24, 6472. (k) Jiang, X.-B.; Van Leeuwen, P.; Reek,
J. Chem. Commun. 2007, 2287.
(7) Zheng, B. H.; Hou, X. L. Org. Lett. 2009, 11, 1789.
(8) (a) Job, A. C.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. Tetrahedron
2002, 58, 2253. (b) Naodovic, M.; Yamamoto, H. Chem. ReV. 2008, 108,
3132. (c) Zagozda, M.; Plenkiewicz, J. Tetrahedron: Asymmetry 2006, 17,
1958.
(9) (a) Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Tachibana, Y.; Kuo, S.-C.;
Hamel, E.; Hackl, T.; Lee, K.-H. J. Med. Chem. 1998, 41, 1155. (b) Zhang,
S.-X.; Feng, J.; Kuo, S.-C.; Brossi, A.; Hamel, E.; Tropsha, A.; Lee, K.-H.
J. Med. Chem. 2000, 43, 167.
The present work realized the success in the kinetic resolution of a
carbon nucleophile for the first time via Pd-catalyzed AAA reaction,
providing both 2,3-disubstituted 2,3-dihydro-4-quinolones and recov-
ered substrates in high yields and ee. The usefulness of the methodol-
ogy has been demonstrated. It provided a new approach for application
(10) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317.
(11) (a) Lovely, C. J.; Bararinarayana, V. Curr. Org. Chem. 2008, 12, 1431. (b)
U.S. Patent 0 039 452, 2008.
JA9082717
9
J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009 18251