54 Chem. Res. Toxicol., Vol. 23, No. 1, 2010
Kuttappan-Nair et al.
(18) Midorikawa, K., Murata, M., Oikawa, S., Tada-Oikawa, S., and
Kawanishi, S. (2000) DNA damage by dimethylformamide: Role of
hydrogen peroxide generated during degradation. Chem. Res. Toxicol.
13, 309–315.
(19) Hwu, J. R., Lin, C. C., Chuang, S. H., King, K. Y., Sue, T. R., and
Tsay, S. C. (2004) Aminyl and iminyl radicals from arylhydrazones
in the photo-induced DNA cleavage. Bioorg. Med. Chem. 12, 2509–
2515.
Acknowledgment. We thank Natural Science and Engineer-
ing Research Council of Canada (NSERC) for funding. We also
thank Prof. Klaus Klarskov for mass spectrometry analyses and
Profs. Pierre Lavinge and Luc Tremblay for NMR analyses.
V.K.-N. thanks Mahatma Gandhi University, Kottayam, for
sanctioning leave for this project.
(20) Sortino, S., Giuffrida, S., and Scaiano, J. C. (1999) Phototoxicity of
naphazoline. Evidence that hydrated electrons, nitrogen-centered
radicals, and OH radicals trigger DNA damage: A combined photo-
cleavage and laser flash photolysis study. Chem. Res. Toxicol. 12, 971–
978.
(21) Wang, H., Marnett, L. J., Harris, T. M., and Rizzo, C. J. (2004) A
novel synthesis of malondialdehyde adducts of deoxyguanosine,
deoxyadenosine, and deoxycytidine. Chem. Res. Toxicol. 17, 144–
149.
(22) Nenajdenko, V. G., Reznichenko, A. L., Lenkova, O. N., Shastin,
A. V., and Balenkova, E. S. (2005) A new synthetic approach to alpha-
chlorocinnamaldehydes. Synthesis-Stuttgart 605–609.
(23) Prakash, J., Casaba, S., and Andrew, L. S. (2005) International
Application Published under the Patent Cooporation Treaty, 117910
A117912.
References
(1) von Sonntag, C. (2006) Free-Radical Induced DNA Damage and Its
Repair. A Chemical PerspectiVe, Springer, Heidelberg.
(2) Cadet, J., Berger, M., Douki, T., and Ravanat, J. L. (1997) Oxidative
damage to DNA: Formation, measurement, and biological significance.
ReV. Physiol. Biochem. Pharmacol. 131, 1–87.
(3) Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J. P.,
Ravanat, J. L., and Sauvaigo, S. (1999) Hydroxyl radicals and DNA
base damage. Mutat. Res., Fundam. Mol. Mech. Mutagen. 424, 9–21.
(4) Vieira, A., and Steenken, S. (1990) Pattern of OH radical reaction
with adenine and its nucleosides and nucleotidessCharacterization
of 2 types of isomeric oh adduct and their unimolecular transformation
reactions. J. Am. Chem. Soc. 112, 6986–6994.
(24) Binkley, R. W. (1970) Photochemistry of unsaturated nitrogen-
containing compounds. VII. Photolysis of phenylhydrazones. J. Org.
Chem. 35, 2796–2801.
(25) Raoul, S., Bardet, M., and Cadet, J. (1995) Gamma-irradiation of 2′-
deoxyadenosine in oxygen-free aqueous-solutionssIdentification and
conformational features of formamidopyrimidine nucleoside deriva-
tives. Chem. Res. Toxicol. 8, 924–933.
(5) Cadet, J., and Berger, M. (1985) Radiation-induced decomposition of
purine bases within DNA and related model compounds. Int. J. Radiat.
Biol. 47, 127–143.
(6) Cadet, J., Douki, T., Frelon, S., Sauvaigo, S., Pouget, J. P., and
Ravanat, J. L. (2002) Assessment of oxidative base damage to isolated
and cellular DNA by HPLC-MS/MS measurement. Free Radical Biol.
Med. 33, 441–449.
(7) Frelon, S., Douki, T., and Cadet, J. (2002) Radical oxidation of the
adenine moiety of nucleoside and DNA: 2-Hydroxy-2 ′-deoxyadenos-
ine is a minor decomposition product. Free Radical Res. 36, 499–
508.
(8) Melvin, T., Bothe, E., and Schultefrohlinde, D. (1996) The reaction
of triplet 2-methyl-1,4-naphthoquinone (menadione) with DNA and
polynucleotides. Photochem. Photobiol. 64, 769–776.
(26) Voituriez, L., and Cadet, J. (1999) Isolation and characterization of
two furan-side photoadducts of 7-methylpyrido[3,4-c] psoralen to the
sugar moiety of 2′-deoxyadenosine. Photochem. Photobiol. 70, 152–
158.
(27) Wagner, J. R., Decarroz, C., Berger, M., and Cadet, J. (1999) Hydroxyl
radical-induced decomposition of 2′-deoxycytidine in aerated aqueous
solutions. J. Am. Chem. Soc. 121, 4101–4110.
(9) Liu, Z., Gao, Y., and Wang, Y. (2003) Identification and characteriza-
tion of a novel cross-link lesion in d(CpC) upon 365-nm irradiation
in the presence of 2-methyl-1,4-naphthoquinone. Nucleic Acids Res.
31, 5413–5424.
(10) Liu, Z. J., Gao, Y., Zeng, Y., Fang, F., Chi, D., and Wang, Y. S.
(2004) Isolation and characterization of a novel cross-link lesion in
d(CpC) induced by one-electron photooxidation. Photochem. Photo-
biol. 80, 209–215.
(11) Ding, H., Majumdar, A., Tolman, J. R., and Greenberg, M. M. (2008)
Multinuclear NMR and kinetic analysis of DNA interstrand cross-
link formation. J. Am. Chem. Soc. 130, 17981–17987.
(12) Hong, I. S., and Greenberg, M. M. (2005) Efficient DNA interstrand
cross-link formation from a nucleotide radical. J. Am. Chem. Soc. 127,
3692–3693.
(13) Bernofsky, C., Bandara, B. M. R., Hinojosa, O., and Strauss, S. L.
(1990) Hypochlorite-modified adenine-nucleotidessStructure, spin-
trapping, and formation by activated guinea-pig polymorphonuclear
leukocytes. Free Radical Res. Commun. 303–315.
(14) Hawkins, C. L., and Davies, M. J. (2001) Hypochlorite-induced damage
to nucleosides: Formation of chloramines and nitrogen-centered
radicals. Chem. Res. Toxicol. 14, 1071–1081.
(15) Hawkins, C. L., and Davies, M. J. (2002) Hypochlorite-induced damage
to DNA, RNA, and polynucleotides: Formation of chloramines and
nitrogen-centered radicals. Chem. Res. Toxicol. 15, 83–92.
(16) Hawkins, C. L., Pattison, D. I., and Davies, M. J. (2002) Reaction of
protein chloramines with DNA and nucleosides: Evidence for the
formation of radicals, protein-DNA cross-links and DNA fragmenta-
tion. Biochem. J. 365, 605–615.
(17) Murata, M., Ohnishi, S., and Kawanishi, S. (2001) Acrylonitrile
enhances H2O2-mediated DNA damage via nitrogen-centered radical
formation. Chem. Res. Toxicol. 14, 1421–1427.
(28) Labet, V., Grant, A., Cadet, J., and Erriksson, L. A. (2008) Deamination
of the radical cation of the base moiety of 2′-deoxycytidine: A
theoretical study. ChemPhysChem 9, 1195–1203.
(29) Lalevee, J., Gigmes, D., Bertin, D., Graff, B., Allonas, X., and
Fouassier, J. P. (2007) Comparative reactivity of aminyl and ami-
noalkyl radicals. Chem. Phys. Lett. 438, 346–350.
(30) Le Tadic Biadatti, M.-H., Callier-Dublanchet, A.-C., Horner, J. H.,
Quiclet-Sire, B., Zard, S. Z., and Newcomb, M. (1997) Absolute rate
constants for iminyl radical reactions. J. Org. Chem. 62, 559–563.
(31) Zard, S. Z. (2008) Recent progress in the generation and use of
nitrogen-centred radicals. Chem. Soc. ReV. 37, 1603–1618.
(32) Steenken, S. (1989) Purine-bases, nucleosides, and nucleotidessAqueous-
solution redox chemistry and transformation reactions of their radical
cations and e- and oh adducts. Chem. ReV. 89, 503–520.
(33) Reynisson, J., and Steenken, S. (2002) DFT calculations on the
electrophilic reaction with water of the guanine and adenine radical
cations. A model for the situation in DNA. Phys. Chem. Chem. Phys.
4, 527–532.
(34) Wang, Y. S., and Liu, Z. J. (2002) Mechanisms for the formation of
major oxidation products of adenine upon 365-nm irradiation with
2-methyl-1,4-naphthoquinone as a sensitizer. J. Org. Chem. 67, 8507–
8512.
(35) Wang, Y. S., Liu, Z. J., and Dixon, C. (2002) Major adenine products
from 2-methyl-1,4-naphthoquinone-sensitized photoirradiation at 365
nm. Biochem. Biophys. Res. Commun. 291, 1252–1257.
(36) Bergeron, F., Klarskov, K., Hunting, D. J., and Wagner, J. R. (2007)
Near-UV photolysis of 2-methyl-1,4-naphthoquinone-DNA duplexes:
Characterization of reversible and stable interstrand cross-links between
quinone and adenine moieties. Chem. Res. Toxicol. 20, 745–756.
TX900268R