38 Organometallics 2010, 29, 38–41
DOI: 10.1021/om900882c
Carbon-Carbon Bond Formation between Furyl and Triphenylphosphine
Ligands in Ruthenium Complexes
Yu-Hao Huang, Wen-Wu Huang, Ying-Chih Lin,* and Shou-Ling Huang
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China
Received October 10, 2009
Summary: The η3-allylic complex 8 was obtained from ther-
obtained by the reaction of an iridium cyclooctadienyl
complex with furan.5 This iridium furyl complex reacted
with tert-butylacetylene by insertion of the alkyne into the
Ir-C bond to form an iridium vinyl hydride complex.6 A few
tungsten furyl complexes were obtained from the reaction of
tungsten propargyl complexes with aldehydes. This furyl
ligand is easily dissociated from the metal fragment and
further reacts with Grignard reagent.7 Previously, we repor-
ted the formation of oxygen addition products in almost
quantitative yield when a simple ruthenium furyl complex
was exposed to air.8 The reaction is proposed to proceed via
the formation of an endoperoxide intermediate.8 In a con-
tinuation of our previous effort on exploring new reactions
of ruthenium furyl complexes, herein we report our unex-
pected observation on the thermal reactions of three ruthe-
nium furyl complexes, each with a pendant unsaturated
hydrocarbon chain on the furyl ring. Two 5,5-disubstituted
propargylic-1,6-enynes, HCCCH(OH)CH2CR2CHdCH2
(2a, R = Ph; 2b, R = Me), prepared in high yields according
to the reported procedures,9 were used for the synthesis of
vinyl-acetylide complexes. Then, three furyl complexes
were synthesized by electrophilic alkylations of the acetylide
complexes followed by a deprotonation process. Thermo-
lysis of the three furyl complexes all led to unusual coupling
products.
molysis of the neutral ruthenium furyl complex 7 with an
unsaturated carbon chain on the furyl ligand. Protonation
of complex 8c with HBF4 generates complex 9c with an
oxygen atom and an olefin group coordinated to the ruthenium
metal.
Metal-mediated processes make possible certain reactions,
which are not feasible without the involvement of the metal
species. In particular, organometallic ruthenium complexes
play important roles in many catalytic reactions, such as
asymmetric hydrogenation,1 olefin metathesis,2 and poly-
merization.3 A better understanding of the mechanism of
these reactions revealed the role of the metal and led to wide
applications of ruthenium in organic synthesis. To further
expand the scope of these applications, it is crucial to explore
new reactivity of various complexes of ruthenium. We pre-
viously reported the synthesis of a ruthenium cyclopropenyl
complex through the deprotonation reaction of a vinylidene
complex containing a -CH2R group at Cβ of the vinylidene
ligand.4 The same approach could also be used for the
synthesis of a neutral ruthenium furyl complex from the
deprotonation of a vinylidene complex containing a -CH2-
CO2R group. Synthesis and reactions of a few furyl com-
plexes of other transition metals have been reported. An
iridium σ-furyl complex containing a hydride ligand can be
As shown in Scheme 1, treatment of [Ru]-Cl ([Ru] =
Cp(PPh3)2Ru) with 2a in CH2Cl2 at room temperature
afforded the vinyl-vinylidene complex 3a exclusively. How-
ever, the reaction of [Ru]-Cl with the 1,6-enyne 2b in the
presence of KPF6 in CH2Cl2 yielded a mixture of the
vinylidene complex 3b and the alkenyl-phosphonium com-
plex 4b in a ratio of ca. 3:2. Separation of 3b and 4b was
achieved by precipitation of 3b from a CH2Cl2/diethyl ether
solution. These reactions proceed via formation of a vinyli-
dene intermediate10 followed by dehydration. Interestingly,
*To whom correspondence should be addressed. E-mail: yclin@ntu.
edu.tw.
(1) (a) Pezet, F.; Daran, J. C.; Sasaki, I.; Aıt-Haddou, H.; Balavoine,
G. G. A. Organometallics 2000, 19, 4008–4015. (b) Burk, M. J.; Hems, W.;
Herzberg, D.; Malan, C.; Zanotti-Gerosa, A. Org. Lett. 2000, 2, 4173–4176.
(c) Alonso, D. A.; Nordin, S. J. M.; Roth, P.; Tarnai, T.; Andersson, P. G.;
Thommen, M.; Pittelkow, U. J. Org. Chem. 2000, 65, 3116–3122. (d)
Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466–
1478. (e) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101,
2067–2096.
(2) (a) Cotter, W. D.; Barbour, L.; McNamara, K. L.; Hechter, R.;
Lachicotte, R. J. J. Am. Chem. Soc. 1998, 120, 11016–11017. (b)
Chisholm, M. H.; Haubrich, S. T.; Huffman, J. C.; Streib, W. E. J. Am.
Chem. Soc. 1997, 119, 1634–1647. (c) Itoh, T.; Mitsukura, K.; Ishida, N.;
Uneyama, K. Org. Lett. 2000, 2, 1431–1434. (d) Choi, T. L.; Lee, C. W.;
Chatterjee, A. K.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 10417–
10418.
(3) (a) McAlvin, J. E.; Fraser, C. L. Macromolecules 1999, 32, 6925–
6932. (b) Wolfe, P. S.; Wagener, K. B. Macromolecules 1999, 32, 7961–
7967. (c) Kamigaito, M.; Watanabe, Y.; Ando, T.; Sawamoto, M. J. Am.
Chem. Soc. 2002, 124, 9994–9995. (d) Hamasaki, S.; Kamigaito, M.;
Sawamoto, M. Macromolecules 2002, 35, 2934–2940. (e) Delaude, L.;
Demonceau, A.; Noels, A. F. Macromolecules 2003, 36, 1446–1456.
(4) (a) Ting, P. C.; Lin, Y. C.; Cheng, M. C.; Wang, Y. Organome-
tallics 1994, 13, 2150–2152. (b) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng,
M. C.; Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433–6444. (c) Lo, Y. H.; Lin,
Y. C.; Lee, G. H.; Wang, Y. Organometallics 1999, 18, 982–988. (d) Chang,
C. W.; Lin, Y. C.; Lee, G. H.; Wang, Y. Organometallics 2000, 19, 3211–
3219. (e) Huang, C. C.; Lin, Y. C.; Huang, S. L.; Liu, Y. H.; Wang, Y.
Organometallics 2003, 22, 1512–1518.
(5) Selnau, H. E.; Merola, J. S. Organometallics 1993, 12, 1583–1591.
(6) Selnau, H. E.; Merola, J. S. Organometallics 1993, 12, 3800–3801.
(7) (a) Liang, K. W.; Li, W. T.; Peng, S. M.; Wang, S. L.; Liu, R. S.
J. Am. Chem. Soc. 1997, 119, 4404–4412. (b) Shu, H. G.; Shiu, L. H.; Wang,
S. H.; Wang, S. L.; Lee, G. H.; Peng, S. M.; Liu, R. S. J. Am. Chem. Soc.
1996, 118, 530–540.
(8) Chang, K. H.; Sung, H. L.; Lin, Y. C. Eur. J. Inorg. Chem. 2006,
649–655.
(9) (a) Boeckman, R. K.; Ko, S. S. J. Am. Chem. Soc. 1982, 104, 1033–
1041. (b) Dygutsch, D. P.; Eilbracht, P. Tetrahedron 1996, 52, 5461–5468.
(c) Marco-Contelles, J.; Arroyo, N.; Anjum, S.; Mainetti, E.; Marion, N.;
ꢀ
ꢀ
Cariou, K.; Lemiere, G.; Mouries, V.; Fensterbank, L.; Malacria, M. Eur. J.
Org. Chem. 2006, 4618–4633. (d) Marco-Contelles, J.; Ruiz-Caro, J.;
Mainetti, E.; Devin, P.; Fensterbank, L.; Malacria, M. Tetrahedron 2002,
58, 1147–1158. (e) Bruce, M. I.; Hameister, C. A.; Swincer, G.; Wallis, R. C.
Inorg. Synth. 1990, 28, 270–272.
€
(10) Le Lagadec, R.; Roman, E.; Toupet, L.; Muller, U.; Dixneuf,
P. H. Organometallics 1994, 13, 5030–5039.
r
pubs.acs.org/Organometallics
Published on Web 12/11/2009
2009 American Chemical Society