Scheme 1
Scheme 2
much attention due to their potential applications in
medicine.8-10
In previous studies, we have developed a synthetic
methodology to prepare fluorinated dehydroalanines.11 In this
contribution, we describe the synthesis of precursor amino
acids that are envisioned to be potential substrates for
lantibiotic synthetases. This class of enzymes catalyzes the
dehydration of Ser and Thr residues in their substrate peptides
resulting in formation of Dha and Dhb structures.5 With the
recent successful in vitro reconstitution of these proteins,12
they can now be evaluated as potential tools for the
construction of more reactive Dha and Dhb analogues. One
possibility would be the replacement of a Ser in the substrates
for dehydration by a difluoroalanine. Enzymatic elimination
of one of the fluorines of difluoroalanine11b would then
produce a fluoro-Dha (Scheme 2). Alternatively, replacement
of the methyl group of Thr with a fluorinated methyl group
and subsequent enzymatic dehydration would result in a Dhb
analogue with increased electrophilicity at the â-carbon.
We report here efficient routes to (2R)-â-difluoroalanine
(1) and (2S,3S)-γ-difluorothreonine (2) appropriately pro-
tected for use in Fmoc-based solid-phase peptide synthesis
(SPPS). We elected to prepare difluorinated alanine and
threonine derivatives as they would be sterically less
demanding than the corresponding trifluorinated analogues
and because trifluoroalanine incorporation into peptides is
challenging and the products have been reported to have low
chemical and configurational stability at physiological pH.13
Previous syntheses of difluoroalanine derivatives have been
mostly racemic14 with some asymmetric routes reported.15
Synthesis of Fmoc-â-difluoroalanine (1). L-Glyceralde-
hyde acetonide 3 is commercially available or can be readily
prepared from L-ascorbic acid in a large scale in 47% overall
yield16 or from commercially available 5,6-isopropylidene-
L-gulono-1,4-lactone in one step (56%).17 The compound was
fluorinated with diethylamino sulfurtrifluoride (DAST) to
afford compound 4 in 89% yield (Scheme 3).18 Treatment
of 4 with hydrochloric acid in methanol was followed by
selective protection of the primary hydroxyl with a tert-
butyldimethylsilyl group in 88% yield. The secondary alcohol
in product 5 was transformed into azide 6 in 70% yield by
reaction with trifluoromethylsulfonic anhydride in pyridine
and subsequent treatment with sodium azide. The azide 6
was transformed in 86% yield into Fmoc-protected amine 7
by reduction of the azide group to the amine and reaction
(7) (a) Wang, E. A.; Walsh, C. Biochemistry 1981, 20, 7539. (b)
Silverman, R. B.; Bichler, K. A.; Leon, A. J. J. Am. Chem. Soc. 1996, 118,
1253. (b) Silverman, R. B.; Bichler, K. A.; Leon, A. J. J. Am. Chem. Soc.
1996, 118, 1241. (c) Pan, Y.; Qiu, J.; Silverman, R. B. J. Med. Chem. 2003,
46, 5292. (d) Berkowitz, D. B.; de la Salud-Bea, R.; Jahng, W. J. Org.
Lett. 2004, 6, 1821.
(8) For reviews, see: (a) Enantiocontrolled Synthesis of Fluoro-Organic
Compounds; Soloshonok, V. A., Ed.; Wiley: Chichester, 1999. (b) Fluorine
in Bioorganic Chemistry; Welch, J. T., Eswarakrishnan, S. Eds.; Wiley:
New York, 1991. (c) Kollonitsch, J. In Biochemical Aspects of Fluorine
Chemistry; Filler, R., Kobayashi, Y., Eds.; Kodansha Ltd. And Elsevier
Biomedical: Tokyo and New York, 1982.
(9) See, for example: (a) Metcalf, B. W.; Bey, P.; Danzin, C.; Jung, M.
J.; Casara, P.; Vevert, J. P. J. Am. Soc. Chem. 1978, 100, 2551. (b) Tsushima,
T.; Kawada, K. Tetrahedron Lett. 1985, 26, 2445. (c) Hart, B. P.; Coward,
J. K. Tetrahedron Lett. 1993, 34, 4917. (d) Shi, G.; Cai, W. J. Org. Chem.
1995, 60, 6289. (e) Percy, J. M.; Prime, M. E. J. Org. Chem. 1998, 63,
8049. (f) Edwards, P. D.; Andisik, D. W.; Bryant, C. A.; Ewing, B.; Gomes,
B.; Lewis, J. J.; Rakiewicz, D.; Steelman, G.; Strimpler, A.; Trainor, D.
A.; Tuthill, P. A.; Mauger, R. C.; Veale, C. A.; Wildonger, R. A.; Williams,
J. C.; Wolanin, D. J.; Zottola, M. J. Med. Chem. 1997, 40, 1876. (g) Cregge,
R. J.; Durham, S. L.; Farr, R. A.; Gallion, S. L.; Hare, C. M.; Hoffman, R.
V.; Janusz, M. J.; Kim, H.-O.; Koehl, J. R.; Mehdi, S.; Metz, W. A.; Peet,
N. P.; Pelton, J. T.; Schreuder, H. A.; Sunder, S.; Tardif, C. J. Med. Chem.
1998, 41, 2461.
(10) For asymmetric procedures, see, for example: (a) Guanti, G.; Banfi,
L.; Narisano, E. Tetrahedron 1988, 44, 5553. (b) Baldwin, J. E.; Lynch, G.
P.; Schofield, C. J. J. Chem. Soc., Chem. Commun. 1991, 736. (c) Kitazume,
T.; Lin, J. T.; Yamazaki, T. Tetrahedron: Asymmetry 1991, 2, 235. (d)
Von dem Bussche-Huennefeld, C.; Seebach, D. Chem. Ber. 1992, 125, 1273.
(e) Watanabe, H.; Hashizume, Y.; Uneyama, K. Tetrahedron Lett. 1992,
33, 4333. (f) Sewald, N.; Seymour, L. C.; Butrger, K.; Osipov, S. N.;
Kolomiets, A.; Fokin, A. V. Tetrahedron: Asymmetry 1994, 5, 1051. (g)
Soloshonok, V. A. ACS Symp. Ser. 1996, 639, 26-41. (h) Sakai, T.; Yan,
F.; Kashino, S.; Uneyama, K. Tetrahedron 1996, 52, 233. (i) Sting, A. R.;
Seebach, D. Tetrahedron 1996, 52, 279. (j) Arnone, A.; Bravo, P.; Capelli,
S.; Fronza, G.; Meille, S. V.; Zanda, M. J. Org. Chem. 1996, 61, 3375. (k)
Soloshonok, V. A.; Kacharov, A. D.; Avilov, D. V.; Ishikawa, K.;
Nagashima, N.; Hayashi, T. J. Org. Chem. 1997, 62, 3470. (l) Demir, A.
S.; Sesenoglu, O.; Gercek-Arkin, Z. Tetrahedron: Asymmetry 2001, 12,
2309.
(12) (a) Xie, L.; Miller, L.; Chatterjee, C.; Averin, O.; Kelleher, N. L.;
van der Donk, W. A. Science 2004, 303, 679. (b) Li, B.; Yu, J.-P. J.;
Brunzelle, J. S.; Moll, G. N.; van der Donk, W. A.; Nair, S. K. Science
2006, 311, 1464.
(13) (a) Hoess, E.; Rudolph, M.; Seymour, L.; Schierlinger, C.; Burger,
K. J. Fluorine Chem. 1993, 61, 163 and references therein. (b) Bordusa,
F.; Dahl, C.; Jakubke, H.-D.; Burger, K.; Koksch, B. Tetrahedron:
Asymmetry 1999, 10, 307. (c) Osipov, S. N.; Burger, K. Tetrahedron Lett.
2000, 41, 5659. (d) Sani, M.; Bruche, L.; Chiva, G.; Fustero, S.; Piera, J.;
Volonterio, A.; Zanda, M. Angew. Chem., Int. Ed. 2003, 42, 2060.
(14) (a) Kollonitsch, J.; Marburg, S.; Perkins, L. M. J. Org. Chem. 1976,
41, 3107. (b) Tsushima, T.; Kawada, K. Tetrahedron Lett. 1985, 26, 2445.
(c) d’Orchymont, H. Synthesis 1993, 961. (d) Gerus, I. I.; Kolomeitsev, A.
A.; Kolycheva, M. I.; Kukhar, V. P. J. Fluorine Chem. 2000, 105, 31.
(15) (a) Fustero, S.; Navarro, A.; Pina, B.; Soler, J. G.; Bartolome´, A.;
Asensio, A.; Simo´n, A.; Bravo, P.; Fronza, G.; Volonterio, A.; Zanda, M.
Org. Lett. 2001, 3, 2621. (b) Katagiri, T.; Michiharu, M.; Matsukava, Y.;
Kumar, J. S. D.; Uneyama, K. Tetrahedron: Asymmetry 2001, 12, 1303.
(c) Abe, H.; Amii, H.; Uneyama, K. Org. Lett. 2001, 3, 313.
(16) (a) Andres, G. C.; Crawford, T. C.; Bacon, B. E. J. Org. Chem.
1981, 46, 2976. (b) Hubschwerlen, C. Synthesis 1986, 962.
(11) (a) Zhou, H.; van der Donk, W. A. Org. Lett. 2001, 3, 593. (b)
Zhou, H.; Schmidt, D. M.; Gerlt, J. A.; van der Donk, W. A. Chem. Bio.
Chem. 2003, 4, 1206.
(17) Hubschwerlen, C.; Specklin, J.-L.; Higelin, J. Org. Synth. 1993, 72,
1.
(18) Xu, Y.; Prestwich, G. D. J. Org. Chem. 2002, 67, 7158.
42
Org. Lett., Vol. 9, No. 1, 2007