J. R. White et al. / Tetrahedron Letters 50 (2009) 7365–7368
7367
Table 5
logues due to the changes in electronic character of the
phosphorus centre.6b,18 We have shown that sulfonated S-Phos li-
gand 6, with a phosphine remote sulfonate group, to be highly
effective in rhodium-catalysed 1,2-additions of arylboronic acids
in aqueous media. The superiority of 6 over 7 is attributed to the
electron-donating dicyclohexylphosphine group enhancing the
nucleophilicity of the aryl donor on rhodium. The results from
the solvent study suggest an ‘on-water’ reaction may be occurring,
where the reactants are dispersed as small droplets leading to a
large increase in the surface area between the reactants and the
aqueous phase. The effective high concentrations of reactants, cou-
pled with the continued availability of ions from bulk solution con-
tribute to an enhanced rate of transmetallation and ensuing
insertion.19 The aqueous solubility of the sulfonated S-Phos ligand
enabled the rhodium complex to be recycled in five successive
aldehyde arylations affording quantitative conversions and a 97%
isolated yield of product in the final run.
Trifluoromethyl ketone arylations
[Rh(cod)Cl]2 (4) (2 mol%)
Ligand 6 (4 mol%)
HO CF3
O
(HO)2B
CF3
1.1 eq. NaOH, N2
H2O, 80 ºC, 24 h
R'
(1.5 eq.)
R'
% Yielda
R
R
Entry
R
R0
1
2
3
4
5
6
7
8
H
H
H
H
87
90
89
p-Me
p-OMe
p-Me
H
p-Me
m-Me
o-Me
2-Naphthyl
p-OMe
m-OMe
p-Cl
2,4,6-Me
p-Cl
p-Cl
p-Cl
p-Cl
p-Cl
p-Cl
p-Cl
p-Cl
0b
78
94
95
92
93
95
96
87
82
9
10
11
12
13
p-Cl
m-Cl
Acknowledgements
All reactions performed on 1.0 mmol of ketone in water (1.5 ml).
a
This work was supported by the EPSRC. Dr. Anneke Lubben
(Mass Spectrometry) and Dr. John Lowe (NMR) are also thanked
for their valuable assistance.
Isolated yield after column chromatography.
b
The starting ketone was recovered quantitatively.
process, but rather the resultant conditions (no added base) were
unfavourable for continued transmetallation of the boronic acid.
The scope of the catalytic additions employing ligand 6 was ex-
tended to include trifluoromethylketones (Table 5). The corre-
sponding products were obtained in very good yields with a
range of boronic acids. The reaction was tolerant of different sub-
stitution patterns on the donor (Table 5, entries 6–8) and even
deactivating halogen substituents afforded excellent isolated
yields of product (Table 5, entries 12 and 13). Unsurprisingly, the
sterically demanding mesitylketone substrate proved unreactive
(Table 5, entry 4).
Supplementary data
Supplementary data associated with this Letter can be found, in
References and notes
1. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (b) Cornils, B.;
Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic
Compounds; VCH: New York, 1996;
Synthesis; Thomas, E. J.; Clayden, J., Eds.; Georg Thieme Verlag: Stuttgart; 2008;
Vol. 36, Chapter 36.1.7, pp 271–331.
c Le Notre, J.; Frost, C.G. Science of
Finally, investigating the scope of the arylation of simple ke-
tones showed electronic effects consistent with those seen for
aldehyde substrates (Table 6). Electron-withdrawing groups on
the carbonyl compound are beneficial for reactivity, as are comple-
mentary electron-donating groups on the boronic acid.
It also appears that the nature of the ketone is of greater impor-
tance in determining the reactivity, with only the p-nitroacetophe-
none substrate offering reasonable conversion into product (Table
6, entries 4–6). The addition of further equivalents of boronic acid
wasfoundtoprovidea68%yieldofisolatedproduct(Table6, entry7).
In conclusion, it is often noted that classical sulfonated phos-
phine ligands are less effective than their non-sulfonated ana-
2. (a) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279–3281;
(b) Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450–4452.
3. (a) Fürstner, A.; Krause, H. Adv. Synth. Catal. 2001, 343, 343–350; (b) Moreau, C.;
Hague, C.; Weller, A. S.; Frost, C. G. Tetrahedron Lett. 2001, 42, 6957–6960; (c)
Imlinger, N.; Mayr, M.; Wang, D.; Wurst, K.; Buchmeiser, M. R. Adv. Synth. Catal.
2004, 346, 1836–1843; (d) Fuchen, T.; Rudolph, J.; Bolm, C. Synthesis 2005, 429–
436; (e) Trindade, A. F.; Gois, P. M. P.; Veiros, L. F.; André, V.; Duarte, M. T.;
Afonso, C. A. M.; Caddick, S.; Cloke, F. G. N. J. Org. Chem. 2008, 73, 4076–4086.
4. (a) Jagt, R. B. C.; Toullec, P. Y.; De Fries, J. G.; Feringa, B. L.; Minnaard, A. J. Org.
Biomol. Chem. 2006, 4, 773–775; (b) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.;
Zhou, Q.-L. Org. Lett. 2006, 8, 1479–1481; (c) Jagt, R. B. C.; Toullec, P. Y.;
Schudde, E. P.; De Fries, J. G.; Feringa, B. L.; Minnaard, A. J. Comb. Chem. 2007, 9,
407–414; (d) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. Chem.
Commun. 2009, 5713–5719.
5. Ros, A.; Aggarwal, V. K. Angew. Chem., Int. Ed 2009, 48, 6289–6292.
6. (a) Leadbeater, N. E. Chem. Commun. 2005, 2881–2902; (b) Shaughnessy, K. H.
Chem. Rev. 2009, 109, 643–710.
7. Huang, R.; Shaughnessy, K. H. Chem. Commun. 2005, 4484–4486.
8. (a) Yin, J.; Rainka, M. P.; Zhang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 1162–1163; (b) Billingsley, K.; Buchwald, S. L. J. Am. Chem.
Soc. 2007, 129, 3358–3366.
9. Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2005, 44, 6173–
6177.
10. (a) Thorpe, T.; Brown, S. M.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Williams,
J. M. J. Tetrahedron Lett. 2000, 41, 4503–4505. and references therein; (b)
Shaughnessy, K. H. Eur. J. Org. Chem. 2006, 1827–1835.
Table 6
Aryl-methyl ketone reactivity patterns
[Rh(cod)Cl]2 (4) (2 mol%)
Ligand 6 (4 mol%)
HO Me
O
(HO)2B
Me
1.1 eq. NaOH, N2
H2O, 80 ºC, 24 h
R'
R'
R
R
(1.5 eq.)
11. Miyaura et al., in their original report, noted ketones were unreactive, see Ref.
2a. Ref. 3a also notes chemoselectivity for the aldehyde in the presence of a
ketone.
12. Tetrakisarylboronates have been shown to react with ketones: Ueura, K.;
Miyamura, S.; Satoh, T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821–
2826.
Entry
R
R0
% Conv.a
1
2
3
4
5
6
7
p-OMe
p-Me
p-F
p-NO2
p-NO2
p-NO2
p-NO2
p-OMe
p-OMe
p-OMe
p-F
p-Me
p-OMe
p-OMe
6
13
19
41
49
60
13. Martina, S. L. X.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J. Chem.
Commun. 2006, 4093–4095.
14. (a) Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353–
3356; (b) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J.
Org. Lett. 2006, 8, 2715–2718; (c) Miyamura, S.; Satoh, T.; Miura, M. J. Org.
Chem. 2007, 72, 2255–2257; (d) Ganci, G. R.; Chisholm, J. D. Tetrahedron Lett.
2007, 48, 8266–8269; (e) Duan, H.-F.; Xie, J.-H.; Qiao, X.-C.; Wang, L.-X.; Zhou,
Q.-L. Angew. Chem., Int. Ed. 2008, 47, 4351–4353.
70 (68)b
All reactions performed on 1.0 mmol of ketone in water (1.5 ml).
As determined by 1H NMR spectroscopy, isolated yields in parentheses.
Using 5.0 equiv of boronic acid.
a
b