vinylations require moderate reaction conditions (60-110
°C),2a,b one of their major drawbacks is longer reaction times
(24-36 h) and poor applicability for triazole and tetrazole
nucleophiles. For example, this longer reaction time, in many
cases, is a major problem with highly electron rich substrates,
such as those of interest in the structural framework A
illustrated in Scheme 1. Earlier attempts to synthesize these
electron rich substrates using moderate reaction conditions2a,b
and longer reaction times routinely gave a considerable
amount of aryl acetylene byproducts (35-65%) and conse-
quently, low yields of the desired product. During the
execution of these studies a relatively shorter process (4-10
h) and a more moderate temperature [(82 °C) Cu-catalyzed
vinylation] has appeared in the literature.2d In our studies,
we recently reported a Cu(I) catalytic system in combination
with the ligand cis-1,2-hexanediol which employed moderate
reaction conditions and shorter reaction times for the
vinylation of thiols.3a Unfortunately, this system proved
ineffective for N- and O- vinylations.
Scheme 1
.
Generalized Cu-Catalyzed Coupling Reaction with
Electron Rich Systems
tions.4 Furthermore, the practical application of these meth-
ods often leads to a mixture of Z and E isomers.4
The most efficient methods currently for the synthesis of
N-vinyl heterocycles and aryl vinyl ethers are based upon
transition-metal-mediated coupling reactions of N-heterocy-
cles and phenols with different vinyl sources. Z and E Hg5
and Pd-mediated6 preparations of vinyl azoles and vinyl
ethers are notable in this case. The toxicity of mercury and
the high cost of Pd, as well as the latter’s air sensitivity,
potentially limit their use for many industrial applications.
A few reports on the Cu-catalyzed vinylation of N-
heterocyclces, phenols, and thiols have appeared in the past
few years. Some of these vinylations require either a
stoichiometric Cu-source7a-c or high catalyst loading, as well
as harsh reaction conditions.7d-g Although a few of these
A potential solution was envisioned by use of an alterna-
tive Cu(I) catalytic system which would work for substrates
related to that of A in Scheme 1 under mild conditions.
Herein, we report the development of a new Cu(I) catalytic
system and its application as a versatile, rapid, efficient, and
stereospecific method for the synthesis of N-vinyl hetero-
cycles and aryl vinyl ethers.
(1) (a) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48,
6954(Minireview) and references cited therein. (b) Ley, S. V.; Thomas,
A. W. Angew. Chem., Int. Ed. 2003, 42, 5400(Review) and references cited
therein. (c) Ley, S. V.; Thomas, A. W. Angew. Chem. 2003, 115, 5558. (d)
Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (e) Beletskaya, I. P.;
Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337. (f) Fraln, R.; Kikeji,
D. Synthesis 2006, 2271. (g) Corbet, J.-P.; Mignani, G. Chem. ReV. 2006,
106, 2651. (h) Kienle, M.; Dubakka, S. R.; Brade, K.; Knochel, P. Eur. J.
Org. Chem. 2007, 4166. (i) Carril, M.; SanMartin, R.; Dominguez, E. Chem.
Soc. ReV. 2008, 37, 639. (j) Shafir, A.; Lichtor, P. A.; Buchwald, S. L.
J. Am. Chem. Soc. 2007, 129, 3490. (k) Altman, R. A.; Buchwald, S. L.
Org. Lett. 2007, 9, 643. (l) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald,
S. L. Org. Lett. 2003, 5, 3667. (m) Gujadhur, R. K.; Bates, C. G.;
Venkataraman, D. Org. Lett. 2001, 3, 4315. (n) Harada, H.; Thalji, R. K.;
Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772. (o) Nordmann,
G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 4978. For intamolecular
Ullmann Coupling, please see also: (p) Chemler, S. R.; Fuller, P. H. Chem
Soc. ReV. 2007, 36, 1153. (q) Evano, G.; Blanchard, N.; Toumi, M. Chem.
ReV 2008, 108, 3054. For a highlight on recent major developments in C-C,
C-N, and C-N coupling, please see: (r) Monnier, F.; Taillefer, M. Angew.
Chem., Int. Ed. 2008, 47, 3096, and references cited therein. (s) Chen, Y.-
G.; Chen, H.-H. Org. Lett. 2006, 8, 5609. For vinylation of amide,s please
see these leading references: (t) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004,
6, 1809. (u) Smith, A. B., III; Duffey, M. O.; Basu, K.; Walsh, S. P.;
Suennemann, H. W.; Frohn, M. J. Am. Chem. Soc. 2008, 130, 422. (v)
Nicolaou, K. C.; Leung, G. Y. C.; Dethe, D. H.; Guduru, R.; Sun, Y. P.;
Lim, C. S.; Chen, D. Y.-K. J. Am. Chem. Soc. 2008, 130, 10019. (w)
Rodriguez, M.; Buchwald, S. L. Org. Lett. 2007, 9, 973. (x) Shen, R.; Lin,
C. T.; Bowman, E. J.; Bowman, B. J.; Proco, J. A., Jr. J. Am. Chem. Soc.
2003, 125, 7889. (y) Huang, X.; Shao, N.; Huryk, R.; Palani, A.; Aslanian,
R.; Seidel-Dugan, C. Org. Lett. 2009, 11, 867. (z) Cesati, R. R., III; Dwyer,
G.; Jones, R. C.; Hayes, M. P.; Yalamanchili, P.; Casebier, D. S. Org. Lett.
2007, 9, 5617. Other contributors were cited in the aforementioned
referenced reviews and minireviews.
The initial ligand screening and optimization studies for
the O-vinylation of phenols were conducted on a simpler
substrate, a phenyl vinyl iodide, because it was devoid of
any electron withdrawing group (EWG) or EDG (see
Supporting Information) groups. The 2-isopropylphenol was
used as the prototypical nucleophilic substrate for these
optimization experiments.8 Ultimately, a new ligand, 2-py-
ridin-2-yl-1H-benzoimidazole (L3) gave superior results
when used in an equimolar concentration with 5 mol % Cu(I),
and 2.0 equivalents of Cs2CO3 in reagent grade DMF
(without drying or degassing). Moreover, in contrast to DMF
the solvents DME, iPrOH and 1,4-dioxane proved to be
ineffective. Interestingly, the normally unstable aryl vinyl
halides which contain EDG in framework A (Scheme 1) were
found to be stable to some extent in DMF. Thus, the above-
mentioned reaction conditions with CuI and L3 proved to
be the best for the vinylation of phenols to furnish the desired
aryl vinyl ethers with little or no formation of the aryl
acetylene byproduct.
The exceptional activity of CuI with L3 is, presumably,
due to the required electron density on Cu provided by ligand
L3 for the vinylation of phenols. In addition, the resulting
Cu-L3 complex may be conformationally less rigid than
(2) (a) Taillefer, M.; Ouali, A.; Renard, B.; Spindler, J.-F. Chem.sEur.
J. 2006, 12, 5301. (b) Bao, W.; Xin Lv, Y. L. Synthesis 2008, 12, 1911. (c)
Ouali, A.; Laurent, R.; Caminade, A.-M.; Majoral, J.-P.; Taillefer, M. J. Am.
Chem. Soc. 2006, 128, 15990. (d) Kaddouri, H.; Vicente, V.; Ouali, A.;
Ouazzani, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 333.
(3) (a) Kabir, M. S.; Van Linn, M. L.; Monte, A.; Cook, J. M. Org.
Lett. 2008, 10, 3363. (b) Kabir, M. S.; Monte, A.; Cook, J. M. Tetrahedron
Lett. 2007, 48, 7269. (c) Kabir, M. S.; Kathleen, E.; Rebecca, P.; Krueger,
S. M.; Ignasiak, R.; Rott, M.; Schwan, W. R.; Stemper, M. E.; Reed, K. D.;
Sherman, D.; Cook, J. M.; Monte, A. Bioorg. Med. Chem. Lett. 2008, 18,
5745. (d) Monte, A.; Kabir, M. S.; Cook, J. M.; Rott, M.; Schwan, W. R.;
Defoe, L. U.S. Pat. Appl. Publ. 2007, 37.
(4) (a) Reference 2a and references cited therein. (b) Okimoto, Y.;
Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2002, 124, 1590. (c) Crivello,
J. V.; Kong, S. J. Org. Chem. 1998, 63, 6745. (d) Suprenant, S.; Chan,
W. Y.; Berthelette, C. Org. Lett. 2003, 5, 4851.
(5) (a) Kizhnyae, V. N.; Pokatilov, F. A.; Tsypina, N. A.; Ratovskii,
G. V.; Vereshchagin, L. I.; Smirnov, A. I. Russ. J. Org. Chem. 2002, 38,
1056. (b) Chen, Y. L.; Hedberg, K. G.; Guarino, K. J. Tetrahedron Lett.
1989, 30, 1067.
(6) (a) Lebedev, A. Y.; Izmer, V. V.; Kazyul’kin, D. N.; Beletskaya,
I. P.; Voskoboynikov, A. Z. Org. Lett. 2002, 4, 623–626. (b) Willis, M. C.;
Taylor, D.; Gillmore, A. T. Chem. Commun. 2003, 2222.
Org. Lett., Vol. 12, No. 3, 2010
465