Journal of the American Chemical Society
Page 14 of 18
(10) For review, see: Watanabe, T. Synthesis of Caprazamycins
Diastereoselective syntheses of α-amino-β-hydroxyesters
and Related Natural Products. Heterocycles, 2017, 95, 662.
(11) a) Wlegmann, D.; Spork, A. P.; Niro, G.; Ducho, C. Where
Are They Now? -Ribosylation of an Acid-Labile Glycosyl
Acceptor as a Potential Key Step for the Synthesis of
Nucleoside Antibiotics. Synlett, 2018, 29, 440; b) Nakajima,
N.; Seida, T.; Furuno, A.; Asahi, T.; Kishimoto, T.; Hamada,
M. Synthetic Studies of Liposidomycin Degradation Product:
Model Studies of Diazepanone Ring Construction.
Heterocycles, 2017, 95, 1074; c) Mitachi, K.; Aleiwei, B. A.;
Schneider, C. M.; Siricilla, S.; Kurosu, M. Stereocontrolled
Total Synthesis of Muraymycin D1 Having a Dual Mode of
Action against Mycobacterium tuberculosis. J. Am. Chem.
Soc. 2016, 138, 12975; d) Fer, M. J.; Bouhss, A.; Patrão, M.;
Corre, L. L.; Pietrancosta, N.; Amoroso, A.; Joris, B.;
Mengin-Lecreulx, D.; Calvet-Vitale, S.; Gravier-Pelletier, C.
5’-Methylene-triazole-substituted-aminoribosyl uridines as
MraY inhibitors: synthesis, biological evaluation and
molecular modeling. Org. Biomol. Chem. 2015, 13, 7193; e)
Ichikawa, S.; Yamaguchi, M.; Hsuan, L. S.; Kato, Y.;
Matsuda, A. Carbacaprazamycins: Chemically Stable
Analogues of the Caprazamycin Nucleoside Antibiotics. ACS
Infect. Dis. 2015, 1, 151; f) Spork, A. P.; Büschleb, M.; Ries,
O.; Wiegmann, D.; Boettcher, S.; Mihalyi, A.; Bugg, T. D.
H.; Ducho, C. Lead Structures for New Antibacterials:
precursors of the ribosyl-diazepanone core of the
liposidomycins. Tetrahedron Lett. 2003, 31, 2781; s) Knapp,
S.; Morriello, G. J.; Doss, G. A. Synthesis of the
Liposidomycin Diazepanone Nucleoside. Org. Lett. 2002, 4,
603; t) Gravier-Pelletier, C.; Milla, M.; Merrer, Y. L.;
Depezay, J. C. Liposidomycins − Synthetic Studies Towards
the Ribosyldiazepanone Moiety. Eur. J. Org. Chem. 2001, 16,
3089; u) Knapp, S.; Morriello, G. J.; Nandan, S. R.; Emge, T.
J.; Doss, G. A.; Mosley, R. T.; Chen, L. Assignment of the
Liposidomycin Diazepanone Stereochemistry. J. Org. Chem.
2001, 66, 5822; v) Kim, K. S.; Ahn, Y. H. Synthesis of the
diazepanone-nucleoside portion of liposidomycins by aldol
reaction of the enolate of diazepanone with a nucleoside 5’-
aldehyde. Tetrahedron: Asymmetry 1998, 9, 3601; w) Merrer,
Y. L.; Gravier-Pelletier, C.; Gerrouache, M.; Depezay, J. C.
Access to enantiopure ribosyl-diazepanone core of
liposidomycins. Tetrahedron Lett. 1998, 39, 385; x) Kim, K.
S.; Cho, I. H.; Ahn, Y. H.; Park, J. I. Synthesis of the 1,4-
diazepan-2-one moiety of liposidomycins. J. Chem. Soc.
Perkin Trans. 1 1995, (26), 1783; y) Knapp, S.; Nandan, S.;
Resnick, L. Synthesis of the liposidomycin diazepanone.
Tetrahedron Lett. 1992, 33, 5485.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) a) Ichikawa, S. Function-Oriented Synthesis: How to Design
Simplified Analogues of Antibacterial Nucleoside Natural
Products? Chem. Rec. 2016, 16, 1106; b) Ichikawa, S. Fine
Synthetic Nucleoside Chemistry Based on Nucleoside
Natural Products Synthesis. Chem. Pharm. Bull. 2008, 56,
1059. c) Hirano, S.; Ichikawa, S.; Matsuda, A. Synthesis of
Caprazamycin Analogues and Their Structure−Activity
Relationship for Antibacterial Activity. J. Org. Chem. 2008,
73, 569; d) Hirano, S.; Ichikawa, S.; Matsuda, A.
Development of a Highly β-Selective Ribosylation Reaction
without Using Neighboring Group Participation:ꢀ Total
StereocontrolledSynthesis of
a Bioactive Muraymycin
Analogue. Chem. Eur. J. 2014, 20, 15292; g) Fer, M. J.; Doan,
P.; Prangé, T.; Calvet-Vitale, S.; Gravier-Pelletier, C. A
Diastereoselective Synthesis of 5’-Substituted-Uridine
Derivatives. J. Org. Chem. 2014, 79, 7758; h) Miyaoka, H.;
Wada, J.; Kawashima, E. Synthesis of the Diazepanone-
Nucleoside Core Structure of Liposidomycins and
Caprazamycins Based on 7-Exo Cyclization of Epoxyamine.
Heterocycles 2014, 88, 719; i) Sarabia, F.; Vivar-García, C.;
García-Ruiz, C.; Martín-Ortiz, L.; Romero-Carrasco, A.
Exploring the Chemistry of Epoxy Amides for the Synthesis
of the 2’’-epi-Diazepanone Core of Liposidomycins and
Caprazamycins. J. Org. Chem. 2012, 77, 1328; j) Ii, K.;
Ichikawa, S.; Al-Dabbagh, B.; Bouhss, A.; Matsuda, A.
Function-Oriented Synthesis of Simplified Caprazamycins:
Discovery of Oxazolidine-Containing Uridine Derivatives as
Antibacterial Agents against Drug-Resistant Bacteria. J. Med.
Chem. 2010, 53, 3793; k) Spork, A. P.; Koppermann, S.;
Dittrich, B.; Herbst-Irmer, R.; Ducho, C. Efficient synthesis
of the core structure of muraymycin and caprazamycin
nucleoside antibiotics based on a stereochemically revised
sulfur ylide reaction. Tetrahedron: Asymmetry 2010, 21, 763;
l) Monasson, O.; Ginisty, M.; Mravljak, J.; Bertho, G.;
Gravier-Pelletier, C.; Merrer, Y. L. Synthetic studies towards
diazepanone scaffolds. Tetrahedron: Asymmetry 2009, 20,
2320; m) Xu, X.; Trunkfield, H. A. E.; Bugg, T. D. H.; Qing,
F. L. Synthesis of gem-difluorinated nucleoside analogues of
the liposidomycins and evaluation as MraY inhibitors. Org.
Biomol. Chem. 2008, 6, 157; n) Monasson, O.; Ginisty, M.;
Bertho, G.; Gravier-Pelletier, C.; Merrer, Y. L. Efficient
synthesis of polyfunctionalised enantiopure diazepanone
scaffolds. Tetrahedron Lett. 2007, 48, 8149; o) Fukunishi, S.;
Ubukata, M.; Nakajima, N. Synthetic Studies of
Liposidomycin Degradation Product: Model Studies of
Uracil Group Introduction. Heterocycles 2007, 73, 627; p)
Sarabia, F.; Martin-Ortiz, L.; Lopez-Herrera, F. J. A
Convergent Synthetic Approach to the Nucleoside-Type
Liposidomycin Antibiotics. Org. Lett. 2003, 5, 3927; q)
Yamashita, A.; Norton, E. B.; Williamson, R. T.; Ho, D. M.;
Sinishtaj, S.; Mansour, T. S. Use of Bis-(chiral α-
methylbenzyl)glycine Esters for Synthesis of Enantiopure β-
Hydroxyamino Esters. Org. Lett. 2003, 5, 3305; r) Drouillat,
B.; Poupardin, O.; Bourdreux, Y.; Greck, C.
Synthesis of (+)-Caprazol,
a
Core Structure of
Caprazamycins. J. Org. Chem. 2007, 72, 9936; e) Hirano, S.;
Ichikawa, S.; Matsuda, A. Total Synthesis of Caprazol, a
Core Structure of the Caprazamycin Antituberculosis
Antibiotics. Angew. Chem. Int. Ed. 2005, 44, 1854.
(13) a) Takeuchi, T.; Abe, H.; Watanabe, T.; Shibasaki, M.
Catalytic asymmetric synthesis of CPZEN-45. Tetrahedron
Lett. 2016, 57, 2901; b) Abe, H.; Gopinath, P.; Ravi, G.;
Wang, L.; Watanabe, T.; Shibasaki, M. Synthesis of
caprazamycin B. Tetrahedron Lett. 2015, 56, 3782; c)
Gopinath, P.; Wang, L.; Abe, H.; Ravi, G.; Masuda, T.;
Watanabe, T.; Shibasaki, M. Catalytic Asymmetric Total
Synthesis of (+)-Caprazol. Org. Lett. 2014, 16, 3364; d)
Gopinath, P.; Watanabe, T.; Shibasaki, M. Studies on
Catalytic Enantioselective Total Synthesis of Caprazamycin
B: Construction of the Western Zone. J. Org. Chem. 2012, 77,
9260; e) Gopinath, P.; Watanabe, T.; Shibasaki, M. Catalytic
Enantioselective Desymmetrization of meso-Glutaric
Anhydrides Using a Stable Ni2-Schiff Base Catalyst. Org.
Lett. 2012, 14, 1358.
(14) a) Nakamura, H.; Yoshida, T.; Tsukano, C.; Takemoto, Y.
Synthesis of CPZEN-45: Construction of the 1,4-Diazepin-2-
one Core by the Cu-Catalyzed Intramolecular Amidation of
a Vinyl Iodide. Org. Lett. 2016, 18, 2300; b) Nakamura, H.;
Tsukano, C.; Yasui, M.; Takemoto, Y. Total Synthesis of (−)-
CaprazamycinꢁA. Angew. Chem. Int. Ed. 2015, 54, 3136; c)
Tsukano, C.; Yokouchi, S.; Girard, A. L.; Kuribayashi, T.;
Sakamoto, S.; Enomoto, T.; Takemoto, Y. Platinum
catalyzed 7-endo cyclization of internal alkynyl amides and
its application to synthesis of the caprazamycin core. Org.
Biomol. Chem. 2012, 10, 6074; d) Girard, A. L.; Enomoto,
T.; Yokouchi, S.; Tsukano, C.; Takemoto, Y. Control of 6-
Exo and 7-Endo Cyclizations of Alkynylamides using
ACS Paragon Plus Environment