3038
H. Zhai et al.
LETTER
References and Notes
+
Ph
N
(1) For reviews on nitrogen-centered radicals, see: (a) Neale,
R. S. Synthesis 1971, 1. (b) Mackiewicz, P.; Furstoss, R.
Tetrahedron 1978, 34, 3241. (c) Stella, L. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 337. (d) Esker, J. L.; Newcomb, M.
Adv. Heterocycl. Chem. 1993, 58, 1. (e) Zard, S. Z. Synlett
1996, 1148. (f) Fallis, A. G.; Brinza, I. M. Tetrahedron
1997, 53, 17543. (g) Zard, S. Z. Chem. Soc. Rev. 2008, 37,
1603. (h) Curran, D. P. In Comprehensive Organic
Synthesis, Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon
Press: Oxford, 1991, 811. (i) Stella, L. In Radicals in
Organic Synthesis, Vol. 2; Renaud, P.; Sibi, M. P., Eds.;
Wiley-VCH: Weinheim, 2001, 407.
(2) For initial studies, see: (a) Kim, S.; Joe, G. H.; Do, J. Y.
J. Am. Chem. Soc. 1993, 115, 3328. (b) Kim, S.; Joe, G. H.;
Do, J. Y. J. Am. Chem. Soc. 1994, 116, 5521. (c) Minozzi,
M.; Nanni, D.; Spagnolo, P. Chem. Eur. J. 2009, 15, 7830.
(3) Zhai, H.; Zlotorzynska, M.; Sammis, G. M. Chem. Commun.
2009, 5716.
Ph
N
OTBS
Bu3Sn
OTBS
22 (0.87 equiv)
Ph
26 (0.13 equiv)
OTBS
N
OTBS
N3
Bu3SnH (30 mol%)
AIBN (15 mol%)
(addition rate = 0.2 mL/h)
C6H6, 80 °C
22
8 (1 equiv)
+ 9 + 10 + 11
Scheme 9 Mechanistic investigations into radical transfer reaction
the hydrogen transfer most likely proceeds through an in-
termolecular pathway.
We have developed a new method for the synthesis of cy-
clic imines using substoichiometric amounts of tributyltin
hydride. The selectivity for formation of the desired cyclic
imine product can be influenced by either altering the ster-
ic bulk of the substituents at C3 or by increasing the sub-
stiution at C5. This new methodology is complementary to
our existing aminyl radical cyclizations onto silyl enol
ethers as we can now access both trans- and cis-1,5-disub-
stituted pyrrolidines. Addition of carbon nucleophiles to
the cyclic imines also provides the corresponding highly
substituted pyrrolidine in excellent yield. We are currently
exploring the efficacy of this cyclization in the context of
complex natural product synthesis.
(4) For a review of radical hydrogen transfer reactions, see:
Robertson, J.; Pillai, J.; Lush, R. K. Chem. Soc. Rev. 2001,
30, 94.
(5) For representative examples of hydrogen abstraction a to
amines, see: (a) Routaboul, L.; Vanthuyne, N.; Gastaldi, S.;
Gil, G.; Bertrand, M. J. Org. Chem. 2008, 73, 364.
(b) El Blidi, L.; Nechab, M.; Vanthuyne, N.; Gastildi, S.;
Bertrand, M.; Gil, G. J. Org. Chem. 2009, 74, 2901.
(6) For an example of an elimination of tributyltin radical from
a carbon-centered radical a to a tin-bound amine, see ref. 2b.
(7) We did not explore addition rates slower than 0.2 mL/h as
the reaction times became prohibitively long.
Supporting Information for this article is available online at
(8) Benati, L.; Bencivenni, G.; Leardini, R.; Nanni, D.; Minozzi,
M.; Spagnolo, P.; Scialpi, R.; Zanardi, G. Org. Lett. 2006, 8,
2499.
(9) While cyclization of azide 8 using 15 mol% of tributyltin
hydride provided good conversion to the cyclized products,
these conditions proved not to be robust for other substi-
tution patterns. Cyclizations using 30 mol% tributyltin
hydride proved to be general and reliable for all substrates
examined.
Acknowledgment
This work was supported by the University of British Columbia and
the Natural Sciences and Engineering Research Council of Canada
(NSERC).
(10) We were also able to isolate 12% of the cis-isomer.
(11) Marco, J. L. J. Heterocycl. Chem. 1986, 1059.
(12) Arai, T.; Abe, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron
Lett. 2004, 45, 5921.
Synlett 2010, No. 20, 3035–3038 © Thieme Stuttgart · New York