species through transmetalation with Me2Zn or Et2Zn.4
Following this report, several efficient catalytic systems have
been developed for the enantioselective alkenylation of
aldehydes via boron/zinc transmetalation of the alkenylboron
reagents.5,6 Despite these advances, the requirement of the
relatively expensive and pyrophoric dialkylzinc reagents in
transmetalation makes this approach less attractive in practi-
cal applications.7 Recently, Shibasaki and Kanai reported a
new approach, without involving the boron/zinc transmeta-
lation, using 1-alkenylboronic acid esters by the catalysis of
a chiral Cu(I)F complex.8 However, the boron reagents need
to be prepared beforehand and are not appropriate for a one-
pot synthesis starting from alkynes and aldehydes.
A recent report from our laboratory revealed that trieth-
ylborane can be used in the enantioselective alkylation of
aldehyde.9 In the presence of DPP-H8-BINOL (1d) (2 mol
%) and titanium tetraisopropoxide (3 equiv), triethylborane
reacts with aromatic and unsaturated aldehydes to give
ethylation products with high enantioselectivities. It occurred
to us that, with a similar catalyst system, 1-alkenylboron
reagents could be employed in the enantioselective alkeny-
lation without using the dialkylzinc reagents. We now report
a practical one-pot method for the catalytic enantioselective
synthesis of secondary allylic alcohols starting from terminal
alkynes and aldehydes via 1-alkenylboron reagents.
Table 1. Catalytic Enantioselective Synthesis of Alcohol 5aaa
ligand
Ti(OiPr)4
5aa
yield (%)
6
entry
(mol %)
(equiv)
ee (%)
yield (%)
1
2
3
4
-
-
-
3
3
3
3
3
3
1.5
4.5
3
17
51
71
56
59
62
72
42
61
8
-
-
41
22
27
27
26
23
25
20
22
37
22
1a (5)
1b (5)
1c (5)
1d (5)
1d (5)
1d (5)
1d (5)
1d (5)
1d (2)
75
82
71
89
91
86
89
0
5
6
7b
8
9
10c
11
3
67
86
a Unless otherwise noted, reactions were carried out with trans-(oct-1-
ennyl)BCy2 4a (1.5 equiv) in refluxing THF for 2-3 h. b 2 equiv of 4a
was employed. c The reaction was carried out at room temperature for 7 h.
out in the presence of titanium tetraisopropoxide (3 equiv),
alkenylation became a major process, affording rac-5aa in
51% yield (entry 2). Under these conditions, enantioselective
formation of (R)-5aa was observed by the addition of 5 mol
% of BINOL derivatives 1a-d (entries 3-6). Thus, for
example, upon heating 2a and 4 (1.5 equiv) in the presence
of (R)-1a (5 mol %) and titanium tetraisopropoxide (3 equiv)
in THF under reflux, (R)-5aa was obtained in 75% ee and
in 71% yield. Of these ligands, the best result was obtained
with (R)-DPP-H8-BINOL (1d), which provided (R)-5aa in
89% ee and in 62% yield (entry 6). The yield and the
enantioselectivity were improved by the increase of the
amount of the alkenylboron reagent 4 (2 equiv) (entry 7).
For the reaction employing 4 (1.5 equiv), decreasing the
Hydroboration of 1-octyne (3a) with dicyclohexylborane
in THF gave trans-1-octenylborane 4 regioselectively (Scheme
2).10 Upon heating 4 (1.5 equiv) with p-chlorobenzaldehyde
Scheme 2. Catalytic Enantioselective Synthesis of Alcohol 5aa
(5) (a) Soai, K.; Takahashi, K. J. Chem. Soc., Perkin Trans. 1 1994,
1257–1258. (b) Dahmen, S. D.; Bra¨se, S. Org. Lett. 2001, 3, 4119–4122.
(c) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124,
12225–12231. (d) Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125,
10677–10683. (e) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A. S. C. J. Org.
Chem. 2003, 68, 1589–1590. (f) Lurain, A. E.; Maestri, A.; Kelly, A. R.;
Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 13608–13609. (g)
Jeon, S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729–1732. (h)
Sprout, C. M.; Richmond, M. L.; Seto, C. T. J. Org. Chem. 2005, 70, 7408–
7417. (i) Richmond, M. L.; Sprout, C. M.; Seto, C. T. J. Org. Chem. 2005,
70, 8835–8840. (j) Lauterwasser, F.; Gall, J.; Ho¨fener, S.; Bra¨se, S. AdV.
Synth. Catal. 2006, 348, 2068–2074. (k) Wu, H.-L.; Wu, P.-Y.; Uang, B.-
J. J. Org. Chem. 2007, 72, 5935–5937. (l) Kerrigan, M. H.; Jeon, S.-J.;
Chen, Y. K.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2009,
131, 8434–8445. (n) Kim, H. Y.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am.
Chem. Soc. 2010, 132, 402–412.
(6) For a relevant approach based on hydrozirconylation of alkynes, see;
(a) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197–5200. (b) Wipf, P.;
Ribe, S. J. Org. Chem. 1998, 63, 6454–6455.
(7) Catalytic enantioselective reductive coupling of alkynes and alde-
hydes is a promising alternative: (a) Miller, K. M.; Huang, W.-S.; Jamison,
T. F. J. Am. Chem. Soc. 2003, 125, 3442–3443. (b) Kong, J.-R.; Ngai, M.-
Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718–719. (c) Chaulagain,
M. R.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc. 2007, 129,
9568–9569. (d) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.; Zhou, Q.-L. J. Am. Chem.
Soc. 2008, 130, 14052–14053. For review; see; (e) Bower, J. F.; Kim, I. S.;
Patman, R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34–46.
(8) Tomita, D.; Kanai, M.; Shibasaki, M. Chem. Asian J. 2006, 1-2,
161–166.
(2a) in THF under reflux for 3 h, dehydroboration11 of 4
took place preferentially to give reduction product 6 in 41%
yield with minor formation of alkenylation product rac-5aa
(Table 1, entry 1). When the reaction of 2a and 4 was carried
(9) Ukon, T.; Harada, T. Eur. J. Org. Chem. 2008, 4405–4407.
(10) Brown, H. C.; Mandal, A. K.; Kulkarni, S. U. J. Org. Chem. 1977,
42, 1392–1398.
(4) Oppolzer, W.; Radinov, R. N. HelV. Chim. Acta 1992, 75, 170–
173.
(11) Midland, M. M.; Petre, J. E.; Zderic, S. A.; Kazubski, A. J. Am.
Chem. Soc. 1982, 104, 528–531.
Org. Lett., Vol. 12, No. 22, 2010
5271