This work was supported by FSU through a start-up fund, a
New Investigator Research (NIR) grant (08KN-16) from the
James
& Esther King Biomedical Research Program
administered by FL DOH, and NSF (CHE 0809201).
Notes and references
1 B. L. Vallee and K. H. Falchuk, Physiol. Rev., 1993, 73, 79.
2 J. M. Berg and Y. Shi, Science, 1996, 271, 1081.
3 C. J. Frederickson, J.-Y. Koh and A. I. Bush, Nat. Rev. Neurosci.,
2005, 6, 449.
4 L. A. Finney and T. V. O’Halloran, Science, 2003, 300, 931.
5 A. Krezel and W. Maret, JBIC, J. Biol. Inorg. Chem., 2006, 11, 1049.
6 W. Maret, BioMetals, 2001, 14, 187.
7 D. H. Nies, Science, 2007, 317, 1695.
8 A. Krezel, Q. Hao and W. Maret, Arch. Biochem. Biophys., 2007,
463, 188.
Fig. 4 Green channel: 1 (top), [Zn(1)]2+ (bottom). Red channel:
(A) Fusion of mApple fluorescent protein with an endosomal targeting
peptide. (B) mApple fused to a Golgi targeting peptide. (C) mApple
fused to lysosomal membrane glycoprotein 1 (LAMP1). (D) MitoTracker
Red CMXRos. Scale bar: 10 mm.
9 K. Kikuchi, H. Komatsu and T. Nagano, Curr. Opin. Chem. Biol.,
2004, 8, 182.
10 R. B. Thompson, Curr. Opin. Chem. Biol., 2005, 9, 526.
11 C. J. Chang and S. J. Lippard, Met. Ions Life Sci., 2006, 1, 61.
12 Z. Dai and J. W. Canary, New J. Chem., 2007, 31, 1708.
13 E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 2009, 42, 193.
14 S. Y. Assaf and S.-H. Chung, Nature, 1984, 308, 734.
15 K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano and T. Nagano,
J. Am. Chem. Soc., 2005, 127, 10197.
16 E. M. Nolan, J. Jaworski, K.-I. Okamoto, Y. Hayashi, M. Sheng
and S. J. Lippard, J. Am. Chem. Soc., 2005, 127, 16812.
17 M. D. Shults, D. A. Pearce and B. Imperiali, J. Am. Chem. Soc.,
2003, 125, 10591.
18 C. R. Goldsmith and S. J. Lippard, Inorg. Chem., 2006, 45, 555.
19 P. Paoletti, A. M. Vergnano, B. Barbour and M. Casado,
Neuroscience, 2009, 158, 126.
20 L. Zhang, S. Dong and L. Zhu, Chem. Commun., 2007, 1891.
21 S. Huang, R. J. Clark and L. Zhu, Org. Lett., 2007, 9, 4999.
22 L. Zhang, R. J. Clark and L. Zhu, Chem.–Eur. J., 2008, 14, 2894.
23 L. Zhang, W. A. Whitfield and L. Zhu, Chem. Commun., 2008, 1880.
24 L. Zhang and L. Zhu, J. Org. Chem., 2008, 73, 8321.
25 L. Zhu, L. Zhang and A. H. Younes, Supramol. Chem., 2009, 21,
268.
26 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and
T. E. Rice, Chem. Rev., 1997, 97, 1515.
27 J. Cody, S. Mandal, L. Yang and C. J. Fahrni, J. Am. Chem. Soc.,
2008, 130, 13023.
28 R. Parkesh, T. C. Lee and T. Gunnlaugsson, Org. Biomol. Chem.,
2007, 5, 310.
29 B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3.
30 E. Kawabata, K. Kikuchi, Y. Urano, H. Kojima, A. Odani and
T. Nagano, J. Am. Chem. Soc., 2005, 127, 818.
The physiological significance of mitochondrial zinc has been
investigated using zinc-selective fluorescent probes.35 Evidence
suggests that mitochondria function as independently operated
endogenous zinc pools which are both sources and sinks
during zinc homeostasis.35 The availability of mitochondria-
targeting zinc probes with broad concentration coverages is
expected to facilitate the investigations of zinc transport
between several intracellular zinc pools (e.g. mitochondrial,
vesicular, and ligand/protein bound).
The localization efficiencies of 1 in other organelles were
studied via co-staining experiments using organelle-specific
fusions to the red fluorescent protein, mApple.36 Compound
1 extensively localizes in Golgi complexes and lysosomes as
indicated by Pearson’s coefficients over 0.50. 1 does not
accumulate in endosomes efficiently (PC = 0.33), suggesting
that it might have entered the cell via passive permeation
through the cell membrane rather than endocytosis. With
addition of 100 mM ZnCl2, the localization properties of 1
vary. In particular, a very high Pearson’s coefficient for
lysosomes (0.93) was recorded. The increase of localization
of 1 in lysosomes at cytotoxic zinc levels suggests that cells
have transported surplus zinc ions to lysosomes for disposal.
In summary, we have demonstrated that through rational
design fluorescent heteroditopic ligands for zinc ions can be
prepared whose dual-channel fluorescence is capable of correlating
[Zn]f under simulated physiological conditions over a range of
6 orders of magnitude. The preliminary live-cell imaging studies
showed that compound 1 (a) is able to penetrate the cell
membrane readily, (b) is not overly toxic to HeLa cells during
the course of the experiment, (c) accumulates in mitochondria
and to lesser extents in other organelles, and (d) undergoes
fluorescence enhancement with increasing zinc gradient. Based
on our understanding of the coordination-driven photophysical
processes in this heteroditopic platform, we are currently
preparing variants of compound 1 with lower excitation energies
to reduce the likelihood of autofluorescence from cellular
samples, and larger spectral separations of two wavelength
channels so that the intensity at each channel can be collected
using matching filter sets in live-cell imaging experiments.
31 Ca2+ and Mg2+ show little effect on the fluorescence of 1, which
ensures the utility of 1 in intracellular imaging. In general, first-row
transition metal ions have high affinities to polyaza ligands such as
1, most of which (e.g. Cu2+) quenches fluorescence. Cd2+ which
belongs to the same group with Zn2+ elicits similar fluorescence
response from 1 (Fig. S8w). Despite the coordination promiscuity
of polyaza ligands, they are frequently incorporated in intracellular
fluorescent indicators because of the trace nature of the interfering
ions in a cellular environment.
32 R. A. Bozym, R. B. Thompson, A. K. Stoddard and C. A. Fierke,
ACS Chem. Biol., 2006, 1, 103.
33 A. Smallcombe, BioTechniques, 2001, 30, 1240.
34 F. Pierrel, P. A. Cobine and D. R. Winge, BioMetals, 2007, 20, 675.
35 S. Sensi, D. Ton-That, P. G. Sullivan, E. A. Jonas, K. R. Gee,
L. K. Kaczmarek and J. H. Weiss, Proc. Natl. Acad. Sci. U. S. A.,
2003, 100, 6157.
36 N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach,
K. L. Hazelwood, M. W. Davidson and R. Y. Tsien, Nat. Methods,
2008, 5, 545.
ꢀc
This journal is The Royal Society of Chemistry 2009
7410 | Chem. Commun., 2009, 7408–7410