enantioselective control in the reaction but also possesses
excellent substrate functional group tolerance if one considers
the strong coordination tendency of sulfide or sulfone with a
transition metal catalyst. Fortunately, the hydrogenation of 1l
afforded the corresponding carboxylic acid 3l with 95% ee
which can be directly oxidized by mCPBA to give 3j in >99%
yield without any racemization. Simple condensation of 3j
with 5-fluoro-2-aminothiazole gave the antidiabetic drug PSN-
GK1 conveniently in good yield with the same enantiomeric
excess. In order to demonstrate the practicality of the catalysis,
a hydrogenation with 4 mmol (1.2 g) scale of substrate 1l was
carried out in the presence of 1 mol% of (R,S)-2h under
30 atm of H2 at 50 1C, complete conversion of 1l and 95%
ee of 3l were obtained. It should be noted that the chirality of
the stereocenter in the PSN-GK1 molecule is critically impor-
tant for its bioactivity, in which the R-enantiomer has the
desired clinical actions in vivo while the S-enantiomer is
completely inactive, although both R- and S-congeners act
equi-potently in vitro.13 Therefore, the present work has not
only furnished a facile method for rapid synthesis of the
related chiral drug in a large scale for clinical study, but has
also provided an excellent opportunity for generating a small
library of both enantiomers of analogous compounds with the
variation at the a- or b-position of the carboxylic moiety for
further structure–activity-relationship (SAR) study to identify
more potent leading compounds.
Int. Pat., WO 2006/016178, 2006; (b) W. Chen, P. J. McCormack,
K. Mohammed, W. Mbafor, S. M. Roberts and J. Whittall,
Angew. Chem., Int. Ed., 2007, 46, 4141; (c) T. T. Co, S. C. Shim,
C. S. Cho, T. J. Kim, S. O. Kang, W.-S. Han, J. Ko and
C.-K. Kim, Organometallics, 2005, 24, 4824; (d) I. N. Houpis,
L. E. Patterson, C. A. Alt, J. R. Rizzo, T. Y. Zhang and
M. Haurez, Org. Lett., 2005, 7, 1947; (e) R. Hoen, J. A. F.
Boogers, H. Bernsmann, A. J. Minnaard, A. Meetsma,
T. D. Tiemersma-Wegman, A. H. M. de Vries, J. G. de Vries
and B. L. Feringa, Angew. Chem., Int. Ed., 2005, 44, 4209;
(f) T. Hayashi, N. Kawamura and Y. Ito, J. Am. Chem. Soc.,
1987, 109, 7876.
5 For selected examples of Ru catalysis, see: (a) X. Cheng, J.-H. Xie,
S. Li and Q.-L. Zhou, Adv. Synth. Catal., 2006, 348, 1271;
(b) L. Qiu, F. Y. Kwong, J. Wu, W. H. Lam, S. Chan,
W.-Y. Yu, Y.-M. Li, R. Guo, Z. Zhou and A. S. C. Chan,
J. Am. Chem. Soc., 2006, 128, 5955; (c) X. Cheng, Q. Zhang,
J.-H. Xie, L.-X. Wang and Q.-L. Zhou, Angew. Chem., Int. Ed.,
2005, 44, 1118; (d) P. E. Maligres, S. W. Krska and
G. R. Humphrey, Org. Lett., 2004, 6, 3147; (e) C.-C. Pai,
C.-W. Lin, C.-C. Lin, C.-C. Chen and A. S. C. Chan, J. Am.
Chem. Soc., 2000, 122, 11513; (f) Q.-H. Fan, C.-Y. Ren,
C.-H. Yeung, W.-H. Hu and A. S. C. Chan, J. Am. Chem. Soc.,
1999, 121, 7407; (g) T. Uemura, X. Zhang, K. Matsumura,
N. Sayo, H. Kumobayashi, T. Ohta, K. Nozaki and H. Takaya,
J. Org. Chem., 1996, 61, 5510; (h) T. Manimaran, T.-C. Wu,
W. D. Klobucar, C. H. Kolich and G. P. Stahly, Organometallics,
1993, 12, 1467; (i) T. Ohta, H. Takaya, M. Kitamura, K. Nagai
and R. Noyori, J. Org. Chem., 1987, 52, 3174.
6 A. Scrivanti, S. Bovo, A. Ciappa and U. Matteoli, Tetrahedron
Lett., 2006, 47, 9261.
7 S. Li, S.-F. Zhu, C.-M. Zhang, S. Song and Q.-L. Zhou, J. Am.
Chem. Soc., 2008, 130, 8584.
8 (a) L. S. Bertram, D. Black, P. H. Briner, R. Chatfield, A. Cooke,
M. C. T. Fyfe, P. J. Murray, F. Naud, M. Nawano, M. J. Procter,
G. Rakipovski, C. M. Rasamison, C. Reynet, K. L. Schofield,
V. K. Shah, F. Spindler, A. Taylor, R. Turton, G. M. Williams,
P. Wong-Kai-In and K. Yasuda, J. Med. Chem., 2008, 51, 4340;
(b) M. C. T. Fyfe, J. R. White, A. Taylor, R. Chatfield,
E. Wargent, R. L. Printz, T. Sulpice, J. G. McCormack,
M. J. Procter, C. Reynet, P. S. Widdowson and P. Wong-Kai-In,
Diabetologia, 2007, 50, 1277; (c) K. R. Guertin and J. Grimsby,
Curr. Med. Chem., 2006, 13, 1839; (d) R. Sarabu, R. Taub and
J. Grimsby, Drug Discovery Today: Therapeutic Strategies, 2007, 4,
111; (e) M. Coghlan and B. Leighton, Expert Opin. Invest. Drugs,
2008, 17, 145; (f) M. Pal, Drug Discovery Today, 2009, 14, 784;
(g) J. Grimsby, S. J. Berthel and R. Sarabu, Curr. Top. Med.
Chem., 2008, 8, 1524.
This work is partially supported by NSFC (nos. 20632060,
20821002, 20620140429, 30772625), the Chinese Academy of
Sciences, the Major Basic Research Development Program of
China (grant no. 2010CB833300), the Science and Technology
Commission of Shanghai Municipality, and Merck Research
Laboratories.
Notes and references
1 (a) For selected reviews, see: A. L. Ong, A. H. Kamaruddin and
S. Bhatia, Process Biochem., 2005, 40, 3526; (b) C. Ghelardini,
N. Galeotti, M. N. Romanelli, F. Gualtieri and A. Bartolini, CNS
Drug Rev., 2000, 6, 63; (c) J.-P. Rieu, A. Boucherle, H. Cousse and
G. Mouzin, Tetrahedron, 1986, 42, 4095; (d) T. Y. Shen, Angew.
Chem., Int. Ed. Engl., 1972, 11, 460; For selected examples, see;
(e) Y. Lu, T. M.-D. Nguyen, G. Weltrowska, I. Berezowska,
C. Lemieux, N. N. Chung and P. W. Schiller, J. Med. Chem.,
2001, 44, 3048; (f) M. Allegretti, R. Bertini, M. C. Cesta,
C. Bizzarri, R. Di Bitondo, V. Di Cioccio, E. Galliera,
V. Berdini, A. Topai, G. Zampella, V. Russo, N. Di Bello,
G. Nano, L. Nicolini, M. Locati, P. Fantucci, S. Florio and
F. Colotta, J. Med. Chem., 2005, 48, 4312; (g) O. Piccolo,
F. Spreafico and G. Visentin, J. Org. Chem., 1987, 52, 10.
2 (a) J.-P. Genet, in Modern Reduction Methods, ed. P. G. Andersson
and I. J. Munslow, Wiley-VCH, Weinheim, 2008, pp. 18–22;
(b) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley-
Interscience, New York, 1994, pp. 30–33; (c) L. A. Oro and
D. Carmona, in The Handbook of Homogeneous Hydrogenation,
ed. J. G. de Vries and C. J. Elsevier, Wiley-VCH, Weinheim, 2007,
pp. 14–19; (d) T. Sugimura, T. Uchida, J. Watanabe, T. Kubota,
Y. Okamoto, T. Misaki and T. Okuyama, J. Catal., 2009, 262, 57.
3 (a) H.-U. Blaser, Adv. Synth. Catal., 2002, 344, 17;
(b) S. J. Roseblade and A. Pfaltz, Acc. Chem. Res., 2007, 40,
1402; (c) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029.
4 For selected examples of Rh catalysis, see: (a) P. H. Briner, M. C.
T. Fyfe, J. P. Madeley, P. J. Murray, M. J. Procter and F. Spindler,
9 Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem., Int. Ed.,
2009, 48, 5345.
10 Cationic iridium(I) complexes of the SpinPHOX (2) were readily
prepared with a standard procedure reported in ref. 9.
11 For examples of addition of bases, see: (a) K. Yamamoto, K. Ikeda
and L. K. Yin, J. Organomet. Chem., 1989, 370, 319; (b) X. Sun,
L. Zhou, C.-J. Wang and X. Zhang, Angew. Chem., Int. Ed., 2007,
46, 2623; (c) M. E. Fox, M. Jackson, I. C. Lennon, J. Klosin and
K. A. Abboud, J. Org. Chem., 2008, 73, 775.
12 (a) G. Argouarch, O. Samuel and H. B. Kagan, Eur. J. Org. Chem.,
2000, 2885; (b) G. Sarakinos and E. J. Corey, Org. Lett., 1999, 1,
1741; (c) see ref. 7; (d) M. C. T. Fyfe, L. S. Gardner, M. Nawano,
M. J. Procter, C. M. Rasamison, K. L. Schofield, V. K. Shah and
K. Yasuda, Int. Pat., WO 2004/072031, 2004; (e) G. R. Bebernitz
and L. Kirman, Int. Pat., WO 2007/041366, 2007; (f) S. Chen,
P. T. W. Cheng and R. A. Smirk, Int. Pat., WO 2008/005914,
2008.
13 For the impact of molecular chirality on the GK activity, see:
J. Grimsby, R. Sarabu, W. L. Corbett, N.-E. Haynes,
F. T. Bizzarro, J. W. Coffey, K. R. Guertin, D. W. Hilliard,
R. F. Kester, P. E. Mahaney, L. Marcus, L. Qi, C. L. Spence,
J. Tengi, M. A. Magnuson, C. A. Chu, M. T. Dvorozniak,
F. M. Matschinsky and J. F. Grippo, Science, 2003, 301, 370.
ꢀc
This journal is The Royal Society of Chemistry 2010
158 | Chem. Commun., 2010, 46, 156–158