2138 Chem. Mater. 2010, 22, 2138–2141
DOI:10.1021/cm100100w
High-Efficiency Nondoped Deep-Blue-Emitting Organic
Electroluminescent Device
Silu Tao,*,†,‡ Yechun Zhou,‡ Chun-Sing Lee,‡ Xiaohong Zhang,*,§ and Shuit-Tong Lee*,‡
†School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC),
Chengdu 610054, China, ‡Center of Super-Diamond and Advanced Films (COSDAF), and Department of
Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China, and
§
Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and
Optoelectronic Materials, Technical Institute of Physics and Chemistry,
Chinese Academy of Sciences, Beijing, 100190, China
Received January 12, 2010
A new blue emitter, 9,9-bis-(3- (9-phenyl-carbazoyl))-2,7-dipyrenylfluorene (DCDPF), has been
synthesized and characterized. Organic light-emitting devices (OLEDs) using DCDPF as a non-
doped emitter exhibits deep-blue emission with a peak at 458 nm and CIE coordinates of (0.15, 0.15).
The maximum efficiency of the device is 4.4 cd/A (3.1 lm/W). The results suggest that the introduction
of carbazole units at the 9-position of fluorene provides an effective way to suppress molecular
aggregation which would cause red shift in emission.
Introduction
two peaks at 472 and 500 nm, respectively.8,9 The color
purity of the OLEDs based on FIrPic is thus compro-
mised. Moreover, it is known that FIrPic-based devices
are accompanied by fast degradation which means a short
lifetime.10 Till now, deep blue phosphorescent emitters
with a long lifetimes have been scarce. Therefore, blue fluo-
rescent emitters should still play a key role in the future
applications of OLEDs.
The color purity and efficiency of most blue OLEDs are
often mutually compromised. While many blue fluores-
cent emitters have been reported, materials emitting in the
deep-blue region with high efficiency are still rare.11-21
Thus, there is still much need for improvements in both
efficiency and color purity of blue OLEDs, especially with
an undoped device structure.
Since the pioneering work on organic light-emitting
devices (OLEDs) by the Kodak group, extensive research
has been carried out to bring OLEDs into commercial
applications in flat-panel displays and solid-state light-
ings.1,2 To produce high-efficiency OLEDs, a key approach
is to develop high-performance electroluminescent mate-
rials including RGB (red, green, blue) emitters. Many new
materials including phosphorescent and fluorescent emit-
ters of different colors have been developed to meet the
demands of full-color displays. Phosphorescent OLEDs
based on the organo-transition metal complexes, espe-
cially iridium (Ir) complexes, are of great interest because
of the feasibility to achieve an internal quantum efficiency
up to 100%.3 Performances of green and red-emitting
phosphorescent OLEDs are, in general, much higher than
those of fluorescent OLEDs.4-7 However, performance
of blue phosphorescent emitter remains a bottleneck.
Furthermore, other than the widely used FIrPic, there
are few alternatives of blue phosphorescent emitters.
However, FIrPic is in fact a blue-green emitter, with
(9) Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown,
J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422.
(10) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.;
Leo, K. Nature 2009, 459, 234.
€
(11) Ego, C.; Grimsdale, A. C.; Uckert, F.; Mullen, K. Adv. Mater.
2002, 14, 809.
(12) Tao, S. L.; Peng, Z. K.; Zhang, X. H.; Wang, P. F.; Lee, C. S.; Lee,
S. T. Adv. Funct. Mater. 2005, 15, 1716.
(13) Lee, M. T.; Liao, C. H.; Tsai, C. H.; Chen, C. H. Adv. Mater. 2005,
17, 2493.
(14) Kan, Y.; Wang, L.; Duan, L.; Hu, Y.; Wu, G.; Qiu, Y. Appl. Phys.
Lett. 2004, 84, 1513.
(15) Gao, Z. Q.; Mi, B. X.; Chen, C. H.; Cheah, K. W.; Cheng, Y. K.;
Wen, W. S. Appl. Phys. Lett. 2007, 90, 123506.
(16) Shih, P. I.; Chuang, C. Y.; Chien, C. H.; Diau, E. W.G.; Shu, C. F.
Adv. Funct. Mater. 2007, 17, 3141.
(17) Tao, S. L.; Hong, Z. R.; Peng, Z. K.; Ju, W. G.; Zhang, X. H.;
Wang, P. F.; Wu, S. K.; Lee, S. T. Chem. Phys. Lett. 2004, 397, 1.
(18) Xu, X.; Chen, S.; Yu, G.; Di, C.; You, H.; Ma, D. G.; Liu, Y. Q.
Adv. Mater. 2007, 19, 1281.
(19) Chiechi, R. C.; Tseng, R. J.; Marchioni, F.; Yang, Y.; Wudl, F.
Adv. Mater. 2006, 18, 325.
(20) Wei, Y.; Chen, C. T. J. Am. Chem. Soc. 2007, 129, 7478.
(21) Luo, J.; Zhou, Y.; Niu, Z. Q.; Zhou, Q. F.; Ma, Y. G.; Pei, J. J. Am.
Chem. Soc. 2007, 129, 11314.
*Corresponding author. Fax: þ852-27844696 (S.T.L.); þ86-10-62554670
(X.H.Z.);þ86-28-83201745(S.L.T.). E-mail: apannale@cityu.edu.hk (S.T.L.);
xhzhang@mail.ipc.ac.cn (X.H.Z.); silutao@uestc.edu.cn (S.L.T.).
(1) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
(2) Hung, L. S.; Chen, C. H. Mat. Sci. Eng., R 2002, 39, 143.
(3) Baldo, M. A.; Brien, D. F. O.; You, Y.; Shoustikou, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
(4) Sun, Y.; Giebink, N. C.; Knanno, H.; Ma, B.; Thompson, M. E.;
Forrest, S. R. Nature 2006, 440, 908.
(5) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Lamansky, S.; Thompson,
M. E.; Kwong, R. C. Appl. Phys. Lett. 2001, 78, 1622.
(6) Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovichi, V.; Baldo,
M. A.;Thompson, M. E.;Forrest, S. R.Appl. Phys. Lett. 2001, 79, 2082.
(7) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl.
Phys. 2001, 90, 5048.
(8) Tokitoa, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F.
Appl. Phys. Lett. 2003, 83, 569.
r
pubs.acs.org/cm
Published on Web 01/29/2010
2010 American Chemical Society