D. McGowan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4431–4436
4435
Table 4
Pharmacokinetic profile of compounds 12b, 25b and 25h in rata
Acknowledgments
c
d
Compd
CLb (L/h/kg)
Vdss (L/kg)
T1/2 (h)
Fe (%)
We thank the discovery biology, analytical chemistry and
ADME/PK teams for their technical assistance.
12b
25b
25h
7.4
7.7
6.9
2.4
2.6
7.0
0.4
0.3
1
40
9
14
Supplementary data
a
Administration: iv 2 mg/kg in PEG400/saline (70:30); po 10 mg/kg PEG400/2%
Vitamin E TPGS.
Supplementary data associated with this article can be found, in
03.097. These data include MOL files and InChiKeys of the most
important compounds described in this article.
b
Clearance from plasma.
Volume of distribution.
Half-life.
c
d
e
Oral bioavailability.
References and notes
Attention then turned to installing the linker between the C2
aromatic, holding the aryl group in its preferred conformation,
and the acid bioisostere, described in Scheme 3. Basic hydrolysis
of methyl ester 4, followed by reaction with dimethylformamide
di-t-butylacetal (DMF-DBA) afforded the indole t-butylester 19.
Alkylation of 19 over sodium hydride in the presence of alkyl
iodide in DMF gave rise to 20a–c (R1 = methyl, isopropyl,
cyclopentyl in yields of 90%, 60%, and 20%, respectively). Typical
Suzuki–Miyaura conditions were used in the coupling of
2-bromoindoles 20a–c with boronic acids to afford intermediates
21a–f. The phenol oxygen was alkylated with methyl bromoace-
tate in DMF over potassium carbonate. Subsequent regioselective
deprotection of the intermediate methyl esters was carried out in
basic media, followed by standard aminoacid coupling conditions
in DMF, employing linkers 22a–e, (the nitrogen of the newly
formed bond is shown in bold, Scheme 3, Table 3), allowed the for-
mation of the corresponding amide intermediates 23a–k in 70–
90% yield. Formation of the sulfamides 24a–k, and subsequent ring
closure was effected as in Scheme 2 to give the 2,6-indole macro-
cycles 25a–k (3).
2. Ghany, M. G.; Strader, D. B.; Thaomas, D. L.; Seeff, L. B. Hepatology 2009, 49,
1335.
3. El-Serag, H. B. N. Eng. J. Med. 2011, 365, 1118.
4. Morgan, T. R.; Ghany, M. G.; Kim, H.-Y.; Snow, K. K.; Shiffman, M. L.; De Santo, J.
L.; Lee, W. M.; Di Bisceglie, A. M.; Bonkovsky, H. L.; Dienstag, J. L.; Morishima,
C.; Lindsay, K. L.; Lok, A. S. F. Hepatology 2010, 52, 833.
5. Sherman, K. E.; Flamm, S. L.; Afdhal, N. H.; Nelson, D. R.; Sulkowski, M. S.;
Everson, G. T.; Fried, M. W.; Adler, M.; Reesink, H. W.; Martin, M.; Sankoh, A. J.;
Adda, N.; Kauffman, R. S.; George, S.; Wright, C. I.; Poordad, F. N. Eng. J. Med.
2011, 365, 1014.
6. Bacon, B. R.; Gordon, S. C.; Lawitz, E.; Marcellin, P.; Vierling, J. M.; Zeuzem, S.;
Poordad, F.; Goodman, Z. D.; Sings, H. L.; Boparai, N.; Burroughs, M.; Brass, C. A.;
Albrecht, J. K.; Esteban, R. N. Eng. J. Med. 2011, 364, 1207.
7. Pockros, P. J.; Reindollar, R.; McHutchinson, J.; Reddy, R.; Wright, T.; Boyd, D. G.
J. Viral Hepat. 2003, 10, 55.
8. (a) Woodcock, J.; Griffin, J. D.; Behrman, R. E. N. Eng. J. Med. 2011, 364, 985; (b)
9. (a) Lohmann, V.; Körner, F.; Herian, U.; Bartenschlager, R. J. Virol. 1997, 71,
8416; (b) Appel, N.; Schaller, T.; Penin, F.; Bartenschlager, R. J. Biol. Chem. 2006,
281, 9833.
10. Jonckers, T. H. M.; Lin, T.-I.; Buyck, C.; Lachau-Durand, S.; Vandyck, K.; Van
Hoof, S.; Vandekerckhove, L. A. M.; Hu, L.; Berke, J. M.; Vijgen, L.; Dillen, L.;
Cummings, M. D.; de Kock, H.; Nilsson, M.; Sund, C.; Rydegård, C.; Samuelsson,
B.; Rosenquist, Å.; Fanning, G.; Van Emelen, K.; Simmen, K.; Raboisson, P. J.
Med. Chem. 2010, 53, 8150.
11. (a) Stansfield, I.; Avolio, S.; Colarusso, S.; Gennari, N.; Narjes, F.; Pacini, B.;
Ponzi, S.; Harper, S. Bioorg. Med. Chem. Lett. 2004, 14, 5085; (b) Beaulieu, P. L.
Expert Opin. Ther. Patents 2009, 19, 145.
12. (a) Vandyck, K.; Cummings, M. D.; Nyanguile, O.; Boutton, C. W.; Vendeville, S.;
McGowan, D.; Devogelaere, B.; Amssoms, K.; Last, S.; Rombauts, K.; Tahri, A.;
Lory, P.; Hu, L.; Beauchamp, D.; Simmen, K.; Raboisson, P. J. Med. Chem. 2009,
52, 4099; (b) Zhou, Y.; Webber, S. E.; Murphy, D. E.; Li, L.-S.; Dragovich, P. S.;
Tran, C. V.; Sun, Z.; Ruebsam, F.; Shah, A. M.; Tsan, M.; Showalter, R. E.; Patel, R.;
Li, B.; Zhao, Q.; Han, Q.; Hermann, T.; Kissinger, C. R.; LeBrun, L.; Sergeeva, M.
V.; Kirkovsky, L. Bioorg. Med. Chem. Lett. 2008, 18, 1413; (c) Li, H.; Linton, A.;
Tatlock, J.; Gonzalez, J.; Borchardt, A.; Abreo, M.; Jewell, T.; Patel, L.; Drowns,
M.; Ludlum, S.; Goble, M.; Yang, M.; Blazel, J.; Rahavendran, R.; Skor, H.; Shi, S.;
Lewis, C.; Fuhrman, S. J. Med. Chem. 2007, 50, 3969.
13. (a) Narjes, F.; Crescenzi, B.; del Rosario Rico Ferreira, M.; Habermann, J.;
Colarusso, S.; Ferreira, M.; Stansfield, I.; Mackay, A. C.; Conte, I.; Ercolani, C.;
Zaramella, S.; Palumbi, M.-C.; Meuleman, P.; Leroux-Roels, G.; Giuliano, C.;
Fiore, F.; Di Marco, S.; Baiocco, P.; Koch, U.; Migliaccio, G.; Altamura, S.; Laufer,
R.; De Francesco, R.; Rowley, M. J. Med. Chem. 2011, 54, 289; (b) Beaulieu, P. L.;
Jolicoeur, E.; Gillard, J.; Brochu, C.; Coulombe, R.; Dansereau, N.; Duan, J.;
Garneau, M.; Jakalian, A.; Kühn, P.; Lagacé, L.; LaPlante, S.; McKercher, G.;
Perrault, S.; Poirier, M.; Poupart, M.-A.; Stammers, T.; Thauvette, L.;
Thavonekham, B.; Kukolj, G. Bioorg. Med. Chem. Lett. 2010, 20, 857; (c)
Ikegashira, K.; Oka, T.; Hirashima, S.; Noji, S.; Yamanaka, H.; Hara, Y.; Adachi,
T.; Tsuruha, J.-I.; Doi, S.; Hase, Y.; Noguchi, T.; Ando, I.; Ogura, N.; Ikeda, S.;
Hashimoto, H. J. Med. Chem. 2006, 49, 6950.
14. Beaulieu, P. L.; Gillard, J.; Bykowksi, D.; Brochu, C.; Dansereau, N.; Duceppe, J.-
S.; Haché, B.; Jakalian, A.; Lagacé, L.; LaPlante, S.; McKercher; Perrault, S.;
Stammers, T.; Thauvette, L.; Warrington, J.; Kukolj, G. Bioorg. Med. Chem. Lett.
2006, 16, 4987.
15. Giuliano, C.; Fiore, F.; Di Marco, A.; Velazquez, J. P.; Bishop, A.; Bonelli, F.;
Gonzalez-Paz, O.; Marcucci, I.; Harper, S.; Narjes, F.; Pacini, B.; Monteagudo, E.;
Migliaccio, G.; Rowley, M.; Laufer, R. Xenobiotica 2005, 10/11, 1035.
16. Stansfield, I.; Pompei, M.; Conte, I.; Ercolani, C.; Migliaccio, G.; Jairaj, M.;
Giuliano, C.; Rowley, M.; Narjes, F. Bioorg. Med. Chem. Lett. 2007, 17, 5143.
17. Cummings, M.D.; Lin, T.-I.; Hu, L.; Tahri, A.; McGowan, D.; Amssoms, K.; Last,
S.; Devogelaere, B.; Rouan, M.-C.; Vijgen, L.; Berke, J.M.; Dehertogh, P.; Fransen,
E.; Cleiren, E.; van der Helm, L.; Fanning, G.; Van Emelen, K.; Nyanguile, O.;
Simmen, K.; Raboisson, P.; Vendeville, S. Angew. Chem. Int. Ed. 2012, 51, 1.
Alkylation of the indole nitrogen proved detrimental to activity
(e.g., 25i, EC50 = 11.9 lM, IC50 = 1.66 lM), the augmented alkyl size
potentially displaces the linker to clash with the protein, or alter-
natively, alters the dihedral angle of the 2-aryl group. Contrary to
the 1,6-macrocyclic indoles, this series tolerated a tether contain-
ing a basic amine (25k, EC50 = 0.24 lM, IC50 = 0.14 lM).
The potent macrocyclic indoles 12b, 25b and 25h were studied
for their pharmacokinetic properties in Sprague–Dawley rats, and
the data is summarized in Table 4. Plasma kinetics were deter-
mined after a single iv administration of 2 mg/kg compound in
PEG400/saline (70:30) as a vehicle. These data were compared
to the oral dose at 10 mg/kg in PEG400 containing 2% Vitamin E
TPGS. Systemic exposure was attainable, albeit with low to mod-
erate bioavailability ranging from 9% to 40%. High clearance from
plasma and half-lives of 1 h or less were observed. HCV replica-
tion is known to occur in the liver,24 thus the high drug concen-
trations observed in the target organ 7 h post dosing (12b, 25b,
25h = 3743, 1524, 1717 ng/g, respectively), corresponding to
favorable liver to plasma ratios (150, 99, and 64 for 12b, 25b
and 25h, respectively), were encouraging results. No formation
of glutathione conjugates was observed after incubation of 25h
with human liver microsomes, fortified with glutathione
(GSH),25 bolstering the development potential of these macrocy-
clic compounds.
In summary, we have described two series of macrocyclic in-
doles where a tether connects a carboxylic acid bioisostere in the
6-position to either the indole nitrogen or 2-aryl position. Optimi-
zation afforded potent allosteric inhibitors of the HCV NS5b
enzyme, reduction of subgenomic HCV RNA replication in Huh-7
cells, and bioavailability in rats. These findings contribute to
further modifications that will be described in Part 2.