Chemistry of Materials
Communication
phosphorescence is generated by the guest carrier trapping
process in 10−15 wt % Ir(ppy)3-doped green OLEDs. Further,
these operating voltages are much lower than that with mCP
(3.2 V)10 and CzTP (3.6 V)10 and comparable that with mCaP
(2.9 V),4e probably because the electron-accepting nature of
BTPS can promote electron-injection in EML. The 10 wt
RISE) (Creating international research hub for advanced
organic electronics) of Japan Science and Technology Agency
(JST) and by KAKENHI (23750204).
REFERENCES
■
(1) (a) Yersin, H., Ed. Highly Efficient OLEDs with Phosphorescent
Materials; Wiley-VCH: Weinheim, Germany, 2008. (b) So, F., Ed.
Organic Electronics-Materials, Processing, Devices and Applications; CRC
Press: Boca Raton, FL, 2010. (c) Reineke, S.; Lindner, F.; Schwartz,
%-doped device showed a very high ηp,100 of 105 lm W−1 (ηc,100
:
100 cd A−1, ηext,100: 28%) at 100 cd m−2 and an ηp,1000 of 82 lm
W−1 (ηc,1000: 75 cd A−1, ηext,1000: 26%) at 1000 cd m−2,
respectively. The average performance was 100 lm W−1 at 100
cd m−2, which was derived from five devices. The angular
dependence of luminous intensity is well-fitted by a Lambertian
distribution (Lambertian factor: 0.968; see Supporting
Information). Associated relative expanded uncertainty with
the luminous flux measurement is lower than a few percent. In
10−15 wt %-doped devices, reduced efficiency roll-off was also
observed at high luminance. To estimate the efficiency roll-off,
we calculated a current density (J1/2) at half the maximum ηext,
and the J1/2 value is evaluated to be 71−91 mA cm−2.
Compared with previously reported phosphorescent OLEDs,
the J1/2 value is quite large despite the high-doping
concentration of Ir(ppy)3.1g Although a 15 wt %-doped film
showed relatively low ηPL of 56%, a green OLED with this film
gave extremely high ηext,100 of 25%. The angular dependence of
luminous intensity is almost fitted by a Lambertian distribution
(Lambertian factor: 0956; see Supporting Information). These
G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234.
̈
(d) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.;
Forrest, S. R. Nature 2006, 440, 908. (e) Gather, M. C.; Kohnen, A.;
Meerholz, K. Adv. Mater. 2011, 23, 233. (f) Xiao, L.; Chen, Z.; Qu, B.;
Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
(g) Sasabe, H.; Kido, J. Chem. Mater. 2011, 23, 621.
(2) Kawamura, Y.; Goushi, K.; Brooks, J.; Brown, J. J.; Sasabe, H.;
Adachi, C. Appl. Phys. Lett. 2005, 86, 071104.
(3) (a) Mi, B. X.; Gao, Z. Q.; Liao, Z. J.; Huang, W.; Chen, C. H. Sci.
China: Chem. 2010, 53, 1679. (b) Tao, Y.; Yang, C.; Qin, J. Chem. Soc.
Rev. 2011, 40, 2943. (c) Chaskar, A.; Chen, H. F.; Wong, K. T. Adv.
Mater. 2011, 23, 3876.
(4) (a) Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.;
Burrows, P. E. Org. Lett. 2006, 8, 4211. (b) Su, S. J.; Sasabe, H.;
Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691. (c) Fukagawa, H.;
Yokoyama, N.; Irisa, S.; Tokito, S. Adv. Mater. 2010, 22, 4775.
(d) Chou, H. H.; Cheng, C. H. Adv. Mater. 2010, 22, 2468.
(e) Motoyama, T.; Sasabe, H.; Seino, Y.; Takamatsu, J.-i.; Kido, J.
Chem. Lett. 2011, 40, 306. (f) Su, S.-J.; Cai, C.; Kido, J. Chem. Mater.
2011, 23, 274. (g) Kim, D.; Salman, S.; Coropceanu, V.; Salomon, E.;
17
results suggest that an ηext estimated from an ηPL might be
́
Padmaperuma, A. B.; Sapochak, L. S.; Kahn, A.; Bredas, J.-L. Chem.
Mater. 2010, 22, 247. (h) Polikarpov, E.; Swensen, J. S.; Chopra, N.;
So, F.; Padmaperuma, A. B. Appl. Phys. Lett. 2009, 94, 223304.
underestimated because an imperfect energy transfer process
from host to guest can be included in an ηPL evaluation.
In summary, we developed a novel high ET host material
BTPS with sulfone and m-terphenyl moieties for phosphor-
escent OLED. By using BTPS as a host material, we
successfully developed high-performance blue and green
OLEDs. These performances are the highest levels in the
scientific literature. Investigation of the device performances
with different dopant concentrations shows that the electro-
phosphorescence is generated by the carrier trapping process.
Our results promise that a high-efficiency phosphorescent
OLED can be realized by using guest charge trapping even
though an EML exhibits a low ηPL in an exciton-confining high
ET host material.
(5) Kim, D.; Coropceanu, V.; Bred
133, 17895.
́
as, J.-L. J. Am. Chem. Soc. 2011,
(6) (a) Huang, T. H.; Whang, W. T.; Shen, J. Y.; Wen, Y. S.; Lin, J.
T.; Ke, T. H.; Chen, L. Y.; Wu, C. C. Adv. Funct. Mater. 2006, 16,
1449. (b) Yang, F.; Sun, K.; Cao, Z. J.; Li, Z. H.; Wong, M. S. Synth.
Met. 2008, 158, 391. (c) Moss, K. C.; Bourdakos, K. N.; Bhalla, V.;
Kamtekar, K. T.; Bryce, M. R.; Fox, M. A.; Vaughan, H. L.; Dias, F. B.;
Monkman, A. P. J. Org. Chem. 2010, 75, 6771.
(7) Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C. Adv.
Mater. 2006, 18, 602.
(8) Hsu, F.-M.; Chien, C.-H.; Hsieh, Y.-J.; Wu, C.-H.; Shu, C.-F.; Liu,
S.-W.; Chen, C.-T. J. Mater. Chem. 2009, 19, 8002.
(9) Kim, S.-J.; Leroy, J.; Zuniga, C.; Zhang, Y.; Zhu, L.; Sears, J. S.;
Barlow, S.; Bred
2011, 12, 1314.
́
as, J.-L.; Marder, S. R.; Kippelen, B. Org. Electron.
ASSOCIATED CONTENT
■
S
(10) Sasabe, H.; Pu, Y. J.; Nakayama, K.; Kido, J. Chem. Commun.
2009, 6655.
(11) Taylor, P. C.; Wall, M. D.; Woodward, P. R. Tetrahedron 2005,
* Supporting Information
Synthetic procedure and characterization, transient phosphor-
escence decay curves, angular dependence of luminous intensity
in OLEDs, and summary of OLED performances (PDF). This
material is available free of charge via the Internet at http://
61, 12314.
(12) Ishii, H.; Tsunami, D.; Suenaga, T.; Sato, N.; Kimura, Y.;
Niwano, N. J. Surf. Sci. Soc. Jpn. 2007, 28, 264.
(13) Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y. J.; Tanaka, D.; Su, S.
J.; Takeda, T.; Pu, Y. J.; Nakayama, K. I.; Kido, J. Chem. Mater. 2008,
20, 5951.
(14) Endo, A.; Suzuki, K.; Yoshihara, T.; Tobita, S.; Yahiro, M.;
Adachi, C. Chem. Phys. Lett. 2008, 460, 155.
(15) Sasabe, H.; Takamatsu, J.; Motoyama, T.; Watanabe, S.;
Wagenblast, G.; Langer, N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J.
Adv. Mater. 2010, 22, 5003.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(16) Chopra, N.; Lee, J.; Xue, J.; So, F. IEEE Trans. Electron Devices
2010, 57, 101.
The authors declare no competing financial interest.
(17) Tsutsui, T. MRS Bull. 1997, 39.
ACKNOWLEDGMENTS
■
We would like to thank Dr. Yong-Jin Pu and Dr. Masakatsu
Hirasawa at Yamagata University for their helpful comments.
We greatly acknowledge the financial support in part by Japan
Regional Innovation Strategy Program by the Excellence (J-
1406
dx.doi.org/10.1021/cm3006748 | Chem. Mater. 2012, 24, 1404−1406