A R T I C L E S
Yang et al.
be protonated at a wider range of physiological conditions. This
auxiliary group plays three roles through (a) enhancing solubility
of the conjugates in water, (b) increasing their affinity to the
negatively charged backbone of DNA, and (c) modulating the
basicity of the pH trigger. The pH trigger itself corresponds to
the second amino group which should enable pH-switchable
behavior at the desired pH range.
The bifunctional pH-regulated part in our design is derived
from a diamino carboxylic acid (lysine) which is connected to
the DNA-cleaving moiety through the carboxyl group of lysine
(Figure 3). This mode of attachment is different from the most
common way of lysine incorporation into conjugates or proteins
through the formation of a peptide bond at the expense of the
R-amino group.29 Importantly, the use of the carboxyl group
for the assembly preserves the two amino groups, both of which
are essential for solubility, binding to DNA, and pH regulation
of DNA cleavage.
Figure 2. Literature examples of pH-controlled amino enediynes.
systems where protonation increased the efficiency of radical
damage through simultaneous acceleration of the H-abstraction
step and deceleration of p-benzyne diradical deactivation through
the retro-Bergman ring-opening.25 After detailed computational
studies indicated that properly positioned cationic groups
decrease the activation barrier for Bergman cyclization,26 Basak
and co-workers27 pursued an alternative approach based on
significant acceleration of cycloaromatization step imposed by
a spatially close ammonium moiety.
Unfortunately, simple aliphatic amines are too basic for the
change in the protonation state to occur at the pH window
necessary for targeting hypoxic cancer cells. As a result, even
when protonation has been shown to accelerate the Bergman
cyclization of enediynes, the change in reactivity did not occur
in the optimal pH range. Nevertheless, the basicity of nitrogen
bases can be controlled in a number of ways, and thus the above
obstacle is not insurmountable. For example, anilines are
significantly less basic than aliphatic amines and can be fine-
tuned through substitution28 to accept the proton only at the
desired pH range. Amides,25b suggested by Chen, and
aldimines,25c designed by Kraka and Cremer, may offer an
excellent solution for fine-tuning the nitrogen basicity.
The present work describes the development of the first pH-
controlled system capable of inducing the much more thera-
peutically important double-stranded (ds) DNA cleavage.
Several challenges presented themselves at the beginning of this
study. First, the change in reactivity has to occur at a relatively
narrow and predefined pH point (ideally ∼ pH 7). Second, an
efficient DNA cleaver was needed which could operate within
the physiological pH range and be attached to a pH-sensitive
functionality without sacrificing its potency.
In order to solve the first problem, we utilized a simple but,
to the best of our knowledge, new strategy for the design of
pH-regulated molecules which is based on the presence of two
amino moieties (or related functional groups) with different
basicities. The first amino group should be sufficiently basic to
(29) Gengrinovitch, S.; Izakovich, E. WO 2005072061 A2 20050811, 2005,
73. Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, H. J. Am. Chem.
Soc. 1995, 117, 6406. Saito, I.; Takayama, M.; Kawanishi, S. J. Am.
Chem. Soc. 1995, 117, 5590. Plourde, G.; El-Shafey, A.; Fouad, F. S.;
Purohit, A. S.; Jones, G. B. Bioorg. Med. Chem. Lett. 2002, 12, 2985.
(30) Basicity of these groups is known to be sensitive to the environment.
See, for example: Highbarger, L. A.; Gerlt, J. A.; Kenyon, G. L.
Biochemistry 1996, 35, 41.
(31) Armitage, B. Chem. ReV. 1998, 98, 1171.
(32) Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002, 124, 9052.
(33) For other photochemically activated enediynes, see: Tachi, Y.; Dai,
W.-M.; Tanabe, K.; Nishimoto, S.-I. Bioorg. Med. Chem. 2006, 14,
3199. Bhattacharyya, S.; Zaleski, J. M. Curr. Top. Med. Chem. 2004,
4, 1637. Schmittel, M.; Viola, G.; Dall’Acqua, F.; Morbach, G. Chem.
Commun. 2003, 5, 646. Karpov, G.; Kuzmin, A.; Popik, V. V. J. Am.
Chem. Soc. 2008, 130, 11771. Polukhtine, A.; Karpov, G.; Popik, V. V.
Curr. Top. Med. Chem. 2008, 8, 460. Yoshimura, N.; Momotake, A.;
Shinohara, Y.; Nishimura, Y.; Arai, T. Chem. Lett. 2008, 37, 174.
Sud, D.; Wigglesworth, T. J.; Branda, N. R. Angew. Chem., Int. Ed.
2007, 46, 8017. Karpov, G. V.; Popik, V. V. J. Am. Chem. Soc. 2007,
129, 3792. Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2006, 71,
7417. O’Connor, J. M.; Friese, S. J.; Rodgers, B. L. J. Am. Chem.
Soc. 2005, 127, 16342. Kar, M.; Basak, A.; Bhattacharjee, M. Bioorg.
Med. Chem. Lett. 2005, 15, 5392. Zhao, Z.; Peacock, J. G.; Gubler,
D. A.; Peterson, M. A. Tetrahedron Lett. 2005, 46, 1373. Poloukhtine,
A.; Popik, V. V. J. Org. Chem. 2005, 70, 1297. Bhattacharyya, S.;
Zaleski, J. M. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates)
2004, 4, 1637. Fouad, F. S.; Crasto, C. F.; Lin, Y.; Jones, G. B.
Tetrahedron Lett. 2004, 45, 7753. Jones, G. B.; Russell, K. C. CRC
Handbook of Organic Photochemistry and Photobiology, 2nd ed.; CRC
Press: New York, 2004; pp 29/1-29/21. Poloukhtine, A.; Popik, V. V.
J. Org. Chem. 2003, 68, 7833. Chandra, T.; Kraft, B. J.; Huffman,
J. C.; Zaleski, J. M. Inorg. Chem. 2003, 42, 5158. Benites, P. J.;
Holmberg, R. C.; Rawat, D. S.; Kraft, B. J.; Klein, L. J.; Peters, D. G.;
Thorp, H. H.; Zaleski, J. M. J. Am. Chem. Soc. 2003, 125, 6434. Banfi,
L.; Guanti, G.; Rasparini, M. Eur. J. Org. Chem. 2003, 7, 1319. Choy,
N.; Blanco, B.; Wen, J.; Krishan, A.; Russell, K. C. Org. Lett. 2000,
2, 3761. Jones, G. B.; Wright, J. M.; Plourde, G., II; Purohit, A. D.;
Wyatt, J. K.; Hynd, G.; Fouad, F. J. Am. Chem. Soc. 2000, 122, 9872.
Kaneko, T.; Takahashi, M.; Hirama, M. Angew. Chem., Int. Ed. 1999,
38, 1267. Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc. 1998, 12,
1835. Ramkumar, D.; Kalpana, M.; Varghese, B.; Sankararaman, S.;
Jagadeesh, M. N.; Chandrasekhar, J. J. Org. Chem. 1996, 61, 2247.
Kagan, J.; Wang, X.; Chen, X.; Lau, K. Y.; Batac, I. V.; Tuveson,
R. W.; Hudson, J. B. J. Photochem. Photobiol. B 1993, 21, 135.
Nicolaou, V. K. C.; Dai, W. M.; Wendeborn, S. V.; Smith, A. L.;
Torisawa, Y.; Maligres, P.; Hwang, C. K. Angew. Chem. 1991, 103,
1034. Shiraki, T.; Sugiura, Y. Biochemistry 1990, 29, 9795. Falcone,
D.; Li, J.; Kale, A.; Jones, G. B. Bioorg. Med. Chem. Lett. 2008, 18,
934. Fouad, F. S.; Wright, J. M.; Plourde, G., II; Purohit, A. D.; Wyatt,
J. K.; El-Shafey, A.; Hynd, G.; Crasto, C. F.; Lin, Y.; Jones, G. B. J.
Org. Chem. 2005, 70, 9789. Poloukhtine, A.; Popik, V. V. Chem.
Commun. 2005, 5, 617. Kraft, B. J.; Coalter, N. L.; Nath, M.; Clark,
A. E.; Siedle, A. R.; Huffman, J. C.; Zaleski, J. M. Inorg. Chem. 2003,
42, 1663. Plourde, G.; El-Shafey, A.; Fouad, F. S.; Purohit, A. S.;
Jones, G. B. Bioorg. Med. Chem. Lett. 2002, 12, 2985. Basak, A.;
Bdour, H. M.; Shain, J. C.; Mandal, S.; Rudra, K. R.; Nag, S. Bioorg.
Med. Chem. Lett. 2000, 10, 1321.
(25) (a) David, W. M.; Kerwin, S. M. J. Am. Chem. Soc. 1997, 119, 1464.
(b) Hoffner, J.; Schottelius, M. J.; Feichtinger, D.; Chen, P. J. Am.
Chem. Soc. 1998, 120, 376. (c) Kraka, E.; Cremer, D. J. Am. Chem.
Soc. 2000, 122, 8245–8264.
(26) Alabugin, I. V.; Manoharan, M. J. Phys. Chem. A 2003, 107, 3363–
3371. Alabugin, I. V.; Manoharan, M.; Kovalenko, S. V. Org. Lett.
2002, 4, 1119–1122. For a general development of these ideas to other
substituents, see recent work on the ortho-effect in the Bergman
cyclization. Zeidan, T.; Kovalenko, S. V.; Manoharan, M.; Alabugin,
I. V. J. Org. Chem. 2006, 71, 962–975. Zeidan, T.; Manoharan, M.;
Alabugin, I. V. J. Org. Chem. 2006, 71, 954–961.
(27) Basak, A.; Kar, M. Bioorg. Med. Chem. 2008, 16, 4532. This system
shows promising pH dependency (more cleavage at pH 7.5 than at
pH 8). However, the change occurs at slightly basic conditions, which
is insufficient for differentiating normal and cancer cells.
(28) Alabugin, I. V.; Manoharan, M.; Buck, M.; Clark, R. J. THEOCHEM
2007, 813, 21.
9
11460 J. AM. CHEM. SOC. VOL. 131, NO. 32, 2009