Page 9 of 11
Journal of the American Chemical Society
2. Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176 –
J.; Shaprio, B. L.; Vane, F. M.; Fleming, J. S.; Ratka, J. S. J. Am.
Chem. Soc. 1963, 85, 2784 ꢀ 2788.; Wilson, R. Marshall; Rekers,
J. W.; Packard, A. B.; Elder, R. C.; J. Am. Chem. Soc. 1980, 102,
1633 – 1641.; Adam, W.; Sahin, C.; Schneider, M.; J. Am.
Chem. Soc. 1995, 117, 1695 – 1702. For studies on azomethine
imines, see: Gergely, J.; Morgan, J. B.; Overman, L. E.; Béꢀ
langer, G.; Hong, F.ꢀT.; Overman, L. E.; Rogers, B. N.; Tellew,
J. T.; Trenkle, W. C. J. Org. Chem. 2002, 67, 7880 ꢀ 7883.;
Overman, L. E.; Tellew, J. T. J. Org. Chem. 1996, 61, 8338 –
8340.
4211. Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020 – 4028.
1
2
3
4
5
6
7
8
3. Suzuki coupling using QꢀPhos Pd catalyst at 0.0005 mol%, see
Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F.; J. Org.
Chem. 2002, 67, 5554 – 5566. HTC Heck couplings, see
Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc.,
1999, 121, 2123 – 2132.
4. For work on HTC using multidentate phosphines on very elecꢀ
tron poor arene, see: Feuerstein, M.; Doucet, H.; Santelli, M.;
Synlett 2001, 1458 – 1460.
5. (a) For trace metal catalyzed Suzuki couplings, see: Leadbeater,
N. E.; Marco, M. Angew. Chem. Int. Ed. 2003, 42, 1407 ꢀ 1409.;
Leadbeater, N. E.; Marco, M. Org. Lett., 2002, 4, 2973 ꢀ 2976.;
Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68, 5660 ꢀ
5667.; Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.; Williams,
V. A.; Grandados, P.; Singer, R. D.; J. Org. Chem. 2005, 70, 161
ꢀ 168. (b) For a review of trace metal contaminants with FeCl3,
see Buchwald, S. L.; Bolm, C. Angew. Chem. Int. Ed. 2009, 48,
5586 – 5587.; Thomé, I; Nijs, A.; Bolm, C.; Chem. Soc. Rev.
2012, 41, 979 ꢀ 987.; Larsson, P.ꢀF.; Correa, A.; Carril, M.;
Norrby, P.ꢀO.; Bolm, C. Angew. Chem. Int. Ed., 2009, 48, 5691 ꢀ
5693.
18. This value is above the theoretical limit for KIE’s that do not
involve tunneling for proton transfers, see: Kiefer, P. M.; Hynes,
J. T. J. Phys. Org. Chem. 2010, 23, 632 – 646.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
19. Zhao, Y.; Truhlar, D. Theor. Chem. Acct. 2008, 120, 215 ꢀ 241.
20. Gaussian 09, Revision B.01 Frisch, M. J.; Trucks, G. W.; Schleꢀ
gel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Naꢀ
katsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.
F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara,
M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.
A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothꢀ
ers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Norꢀ
mand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Forꢀ
esman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Wallingford
CT, 2009.
6. Kirsch, S. Synthesis 2008, 3183–3204.
7. Michelet, V.; Toullec, P. Y.; Genêt, J.ꢀP. Angew. Chem. Int. Ed.
2008, 47, 4268–4315.
8. Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed.
2007, 46, 4042–4059.
9. Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102,
813–834.
10. Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
11. Li, C.ꢀJ.; Trost, B. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,
13197–13202.
12. a) Bhanu Prasad, B. A.; Yoshimoto, F. K.; Sarpong, R. J. Am.
Chem. Soc. 2005, 127, 12468–12469.; Smith, C. R.; Bunnelle, E.
M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169–1171.;
Fisher, E. L.; WilkersonꢀHill, S. M.; Sarpong, R. J. Am. Chem.
Soc. 2012, 134, 9946–9949.
13. Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111,
2937–2980.; Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Geꢀ
vorgyan, V. Chem. Rev. 2013, 113, 3084 ꢀ 3213.; Seregin, I. V.;
Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007, 9, 3433–
3436.; Li, Z.; Chernyak, D.; Gevorgyan, V. Org. Lett. 2012, 14,
6056–6059.; Chernyak, D.; Gevorgyan, V. Org. Lett. 2010, 12,
5558–5560.; Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc.
2006, 128, 12050–12051.; Chernyak, D.; Gadamsetty, S. B.;
Gevorgyan, V. Org. Lett. 2008, 10, 2307–2310.; Li, Z.;
Chernyak, D.; Gevorgyan, V. Org. Lett. 2012, 14, 6056–6059.
14. (a) Narayan, A. R. H.; Sarpong, R. Green Chem. 2010, 12, 1556
ꢀ 1559. (b) Heller, S. T.; Kiho, T.; Narayan, A. R. H.; sarpong,
R. Angew. Chem. Int. Ed. 2013, 52, 11120 – 11133.
21. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378 ꢀ 6396.
22. Intrinsic Reaction Coordinate (IRC) calculations were used to
connect transition state structures to their local minima, as deꢀ
scribed in: (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.
1991, 95, 5853 ꢀ 5860. (b) Gonzalez, C.; Schlegel, H. B. J Chem.
Phys. 1989, 90, 2154 ꢀ 2161. (c) C. Lee, C.; Yang, W.; Parr, R.
G. Phys Rev. B 1988, 37, 785 ꢀ 789. (d) Fukui, K. Acc. Chem.
Res. 1981, 14, 363 – 368.
23. Structural images were created with Ball & Stick, see: Ball &
Stick 4.0a12, Muller, N.; Faulk, A. Johannes Kepler University
Linz 2004.
24. Predicted KIE values were computed using the Bigeleisen and
Mayer method, as implemented in Quiver. (a) Bigeleisen, J.;
Mayer, M. G. J. Chem. Phys. 1947, 15, 261ꢀ267. (b) Saunders,
W.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1999, 111,
8989ꢀ8994. (c) A modified version of Quiver provided by Prof.
Daniel Singleton (Texas A&M) was utilized.
25. Phinyocheep, P.; Pasiri, S.; Tavichai, O. J. Appl. Polym. Sci.
2003, 87, 76–82.; Podešva, J.; Holler, P. J. Appl. Polym. Sci.
1999, 74, 3203–3213.; Samran, J.; Phinyocheep, P.; Daniel, P.;
Kittipoom, S. J. Appl. Polym. Sci. 2005, 95, 16–27.
26. (a) Dunn, A. L.; Landis, C. R. Magn. Reson. Chem. 2017, 55,
329–336. (b) Foley, D. A.; Bez, E.; Codina, A.; Colson, K. L.;
Fey, M.; Krull, R.; Piroli, D.; Zell, M. T.; Marquez, B. L. Anal.
Chem. 2014, 86, 12008–12013.
27. (a) Chung, R.; Hein, J. E. Top. Catal. 2017, 137, 1–15. (b) Theꢀ
ron, R.; Wu, Y.; Yunker, L. P. E.; Hesketh, A. V.; Pernik, I.;
Weller, A. S.; McIndoe, J. S. ACS Catal. 2016, 6, 6911–6917.
(c) Foley, D. A.; Doecke, C. W.; Buser, J. Y.; Merritt, J. M.;
Murphy, L.; Kissane, M.; Collins, S. G.; Maguire, A. R.;
Kaerner, A. J. Org. Chem. 2011, 76, 9630–9640.
28. (a) Rougeot, C.; Situ, H.; Cao, B. H.; Vlachos, V.; Hein, J. E.
React. Chem. Eng. 2017, 2 (2), 226–231. (b) Malig, T. C.;
Koenig, J. D. B.; Situ, H.; Chehal, N. K.; Hultin, P. G.; Hein, J.
E. React. Chem. Eng. 2017, 2 (3), 309–314.
29. XꢀRay structures were visualized with: Legault, CYL view 1.0b;
Universitè de Sherbrooke: Quebec, Canada, 2009;
15. Zhang, J.; Schmalz, H.ꢀG. Angew. Chem. Int. Ed. 2006, 45,
6704–6707.
16. For the merits of merging synthesis, computation and kinetics,
see: (a) Lineberger, W. C.; Borden, W. C. Phys. Chem. Chem.
Phys. 2011, 13, 11792 – 11813. (b) For recent applications to
understanding KOtBu mediated reactions, see: Liu, W.ꢀB.;
Schuman, D. P.; Yang, Y.ꢀF.; Toutov, A. A.; Liang, Y.; Klare,
H. F. T.; Nesnas, N.; Oestreich, M.; Blackmond, D. G.; Virgil, S.
C.; Banerjee, S.; Zare, R. N.; Grubbs, R. H.; Houk, K. N.; Stoltz,
B. M. J. Am. Chem. Soc. 2017, 139, 6867 – 6879. (c) Banerjee,
S.; Yang, Y.ꢀF.; Jenkins, I. D.; Liang, Y.; Toutov, A. A.; Liu,
W.ꢀB.; Schuman, D. P.; Grubbs, R. H.; Stoltz, B. M.; Krenske,
E. H.; Houk, K. N.; Zare, R. N. J. Am. Chem. Soc. 2017, 139,
6880 – 6887.
17. For studies on E- and Z- hydrazone isomerism, see Hegarty, A.
F.; Scott, F. L.; J. Org. Chem. 1968, 753 ꢀ 762.; Karabatsos, G.
J.; Vane, F. M.; Taller, R. A.; Hsi, N. J. Am. Chem. Soc. 1964,
86, 3351 – 3357.; Karabatsos, G. J.; Taller, R. A.; Vane, F. M.;
Tetrahedron Lett. 1964, 1081 ꢀ 1085.; Karabatsos, G. J.; Taller,
R. A.; J. Am. Chem. Soc. 1963, 85, 3624 ꢀ 3629.; Karabatsos, G.
ACS Paragon Plus Environment