COMMUNICATIONS
1
[9] a) W. A. Sheppard, J. Am. Chem. Soc. 1960, 82, 4751 ± 4752; b) W. A.
Sheppard, J. Am. Chem. Soc. 1962, 84, 3064 ± 3071; c) W. A. Sheppard,
J. Am. Chem. Soc. 1962, 84, 3072 ± 3076.
[10] a) M. Bremer, K. Tarumi, Adv. Mater. 1993, 5, 842 ± 848; b) M. Klasen,
M. Bremer, A. Götz, A. Manabe, S. Naemura, K. Tarumi, Jpn. J. Appl.
Phys. 1998, 37, L945 ± L948.
than 1 kcalmol
for moderate deformations. A density
functional theory calculation (DFT; B3LYP/6-31G*) predicts
slightly lower strain energies also for larger deformations.
The calculations in combination with the X-ray structure
data indicate that the relatively high dipole moment m of the
aromatic pentafluorosulfuranyl group is linked to two fea-
tures. First, a twist of the equatorial fluorine atoms by roughly
2.58 out of the equatorial plane results in an additional
component to the overall dipole moment in the direction of
the long molecular axis. Second, the S F bonds are highly
polarized due to the hypervalence of the sulfur atom.
An interesting point with regard to materials design is the
theoretical possibility to ªtuneº the dipole moment of the
pentafluorosulfuranyl group by pushing the ªsoftº equatorial
fluorine atoms into the desired direction with specific steric
pressure of neighboring groups.
The pentafluorosulfuranyl group as a polar terminal group
for liquid crystals leads to a new class of liquid crystals with
the highly attractive combination of very strong dielectric
anisotropy (De) and reasonably high extrapolated clearing
points. A computational model was developed with the aim to
understand and predict the electrooptic properties of liquid
crystals based on hypervalent sulfur fluorides. Due to its
chemical robustness and its polar but lipophilic character, the
pentafluorosulfuranyl group surely also has some unexplored
potential as a structural component not only liquid crystals
but also in polymers and pharmaceuticals.
[11] V. Reiffenrath, R. Eidenschink, G. Weber (Merck KGaA), DE-B
3721268, 1987 (WO-A 8810251 A1) [Chem. Abstr. 1993, 110, 240329].
[12] M. P. Greenhall, presentation FRx C-2 at the 15th International
Symposium on Fluorine Chemistry, Vancouver, Canada, 1997.
[13] Some general methods for the synthesis of liquid crystals: a) E.
Poetsch, Kontakte (Darmstadt) 1988, 15 ± 28, and references therein;
b) P. Kirsch, E. Poetsch, Adv. Mater. 1998, 10, 602 ± 605.
[14] The application-oriented evaluation of materials that do not show any
mesophases, such as nearly all highly fluorinated two-ring materials, is
centered around ªvirtualº clearing temperatures, electrooptic param-
eters, and viscosities. These data are obtained by extrapolation from a
standardized nematic host mixture: TNI,extr, De, Dn, and g1 were
determined by linear extrapolation from a 10% w/w solution in the
commercially available Merck mixture ZLI-4792 (TNI 92.88C, De
5.27, Dn 0.0964). For the pure substances the mesophases were
identified by optical microscopy and the phase transition temper-
atures by differential scanning calorimetry (DSC).
[15] 8: Purity by HPLC: 99.9%; m.p. 698C (n-heptane); 1H NMR
(300 MHz, CDCl3, 303 K): d 0.90 ± 0.95 (m, 3H), 1.04 ± 1.13 (m,
2H), 1.27 ± 1.48 (m, 2H), 2.05 ± 2.20 (m, 1H), 3.48 ± 3.55 (m, 2H),
4.18 ± 4.26 (m, 2H), 5.43 (s, 1H), 7.56 (d, 2H, J 10.6 Hz), 7.75 (d, 2H,
J 10.6 Hz); 19F NMR (280 MHz, CDCl3, 303 K): d 29.8 (quint, 1F,
J 155 Hz), 51.3 (d, 4F, J 155 Hz); MS (EI): m/z: 332 [M ], 313
[M
F]. Single crystals for the X-ray structure analysis were
obtained by crystallization from n-heptane. Crystal structure data
Å
for 8 (C13H17F5O2S): triclinic, P1, a 7.3426(6), b 8.8105(7), c
12.1867(9) , a 80.275(6), b 79.740(6), g 68.448(6)8, V
1
716.91(10) 3, Z 2, 1calcd 1.539 gcm
,
R(F) 0.0386 for 2546
observed independent reflections (3.428 ꢂ 2Wꢂ 50.248). Crystallo-
graphic data (excluding structure factors) for the structure reported
in this paper have been deposited with the Cambridge Crystallo-
graphic Data Center as supplementary publication no. CCDC-112480.
Copies of the data can be obtained free of charge on application to
CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (44)1223-
336-033; e-mail: deposit@ccdc.cam.ac.uk).
Received: December 18, 1998
Revised version: February 15, 1999 [Z12797IE]
German version: Angew. Chem. 1999, 111, 2174 ± 2178
Keywords: hypervalent compounds ´ liquid crystals ´ meso-
gens ´ molecular modeling ´ sulfur
[16] a) H. O. Pritchard, H. A. Skinner, Chem. Rev. 1955, 55, 745 ± 786;
b) A. L. Allred, J. Inorg. Nucl. Chem. 1961, 17, 215 ± 221; c) J. Hinze,
Fortschr. Chem. Forsch. 1968, 9, 448 ± 485.
[17] a) The calculations were done with Spartan 5.0: Wavefunction Inc.,
18401 Von Karman Avenue, Suite 370, Irvine, CA 92612; b) for the
calculations on pentafluorosulfuranylbenzene Gaussian 94 was used:
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson,
M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A.
Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski,
J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayak-
kara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong,
J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S.
Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C.
Gonzalez, J. A. Pople, Gaussian, Pittsburgh PA, 1995.
[1] D. Pauluth, T. Geelhaar, Nachr. Chem. Tech. Lab. 1997, 45, 9 ± 15.
[2] The dielectric anisotropy is defined as De e e , the birefringence
k
?
as Dn nk n?, where k stands for parallel and ? perpendicular to
the nematic phase director, which is approximated by the long
molecular axis. The correlation between De, the dipole moment m, and
the angle b between the molecular dipole and the director is the
following: De ꢀ Da F(m2/2kB T)(1 3cos2b)S; Da is the anisotropy
of the polarizability, F the reaction field factor, and S the order
parameter: a) W. Maier, G. Meier, Z. Naturforsch. A 1961, 16, 262 ±
267; b) D. Demus, G. Pelzl, Z. Chem. 1981, 21, 1 ± 9.
[3] W. H. de Jeu, Physical Properties of Liquid Crystalline Materials,
Gordon & Breach, New York, 1980.
[4] M. Bremer, S. Naemura, K. Tarumi, Jpn. J. Appl. Phys. 1998, 37, L88 ±
L90.
[5] A. Sasaki, T. Uchida, S. Miyagami, Jpn. Display ꢀ86, 1986, 62.
[6] a) K. Tarumi, M. Bremer, T. Geelhaar, Annu. Rev. Mater. Sci. 1997, 27,
423 ± 441; b) E. Bartmann, Ber. Bunsen-Ges. Phys. Chem. 1993, 97,
1349 ± 1355.
[7] An approach to compensate for the low clearing points of polar
fluorinated liquid crystals is reported in our previous communications:
a) P. Kirsch, K. Tarumi, Angew. Chem. 1998, 110, 501 ± 506; Angew.
Chem. Int. Ed. 1998, 37, 484 ± 489; b) P. Kirsch, M. Heckmeier, K.
Tarumi, Liq. Cryst. 1999, 26, 449 ± 452.
[8] Reviews on pentafluorosulfuranyl derivatives: a) D. Lentz, K. Seppelt
in Chemistry of Hypervalent Compounds (Ed.: K. Akiba), Wiley, 1999,
Chapter 10, p. 295; b) R. Winter, G. L. Gard, ACS Symp. Ser. 1994,
555, 128.
1992
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3813-1992 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1999, 38, No. 13/14