1064
A. Višnjevac et al. / Polyhedron 28 (2009) 1057–1064
Table 5
Grants No. 098-0982914-2935, 098-1191344-2943 and 098-
0982904-2927.
Geometry of the coordination spheres around Pd1 and Pd2 in 4.
Pd1
Pd2
References
Bond lengths (Å)
Pd–S
Pd–Cl
Pd–N3 (N23)
Pd–N4 (N24)
2.263(3)
2.292(3)
2.029(7)
2.028(8)
2.252(3)
2.299(2)
2.034(7)
2.020(7)
[1] K.A. Hartman, A. Rich, J. Am. Chem. Soc. 87 (1965) 2033.
[2] R.B. Inman, J. Mol. Biol. 9 (1964) 624.
[3] P. Rajagopal, J. Feigon, Nature 339 (1989) 637.
[4] L.C. Sowers, G.V. Fazakerley, R. Eritja, B.E. Kaplan, M.F. Goodman, Proc. Natl.
Acad. Sci. USA 83 (1986) 5434.
Angles (°)
[5] (a) B. Lippert, H. Schöllhorn, U. Thewalt, J. Am. Chem. Soc. 108 (1986) 6616;
(b) W. Saenger, in: Principles of Nucleic Acid Structure, Springer Verlag, New
York, 1982;
(c) M. Monshi, K. Al-Farhan, S. Al-Resayes, G. Ghaith, A.A. Hasanein,
Spectrochim. Acta, Part A 53 (1997) 2669.
[6] D. Montagner, E. Zangrando, B. Longato, Inorg. Chim. Acta (2008), doi:10.1016/
S–Pd–Cl
91.10(10)
89.7(2)
173.8(2)
176.1(2)
90.7(2)
90.29(10)
89.1(2)
172.5(2)
178.5(2)
90.3(2)
S–Pd–N3 (N23)
S–Pd–N4 (N24)
Cl–Pd–N3 (N23)
Cl–Pd–N4 (N24)
N3 (N23)–Pd–N4 (N24)
88.1(3)
90.2(3)
[7] (a) F. Zamora, M. Kunsman, M. Sabat, B. Lippert, Inorg. Chem. 36 (1997) 1583;
(b) A.H. Velders, B. van der Geest, H. Kooijman, A.L. Spek, J.G. Haasnoot, J.
Reedijk, Eur. J. Inorg. Chem. (2001) 369;
(c) L.Y. Kuo, M.G. Kanatzidis, M. Sabat, A.L. Tipton, T.J. Marks, J. Am. Chem. Soc.
113 (1991) 9027.
[8] P.J.S. Miguel, P. Lax, M. Willermann, B. Lippert, Inorg. Chim. Acta 357 (2004)
4552.
N24, is 0.0722(6) Å, whereas in the case of the one defined by Pd2,
S4, Cl2, N4 and N23, it is 0.076(7) Å.
The crystal structure is characterized by discrete complex mol-
ecules, each of which is connected to two DMSO molecules (in
addition to those included in the coordination around Pd), via the
imino-nitrogens N4 and N24 and the oxygen atoms of the neigh-
bouring non-coordinated solvent molecules [N4–HÁÁÁO10,
2.965(12) Å, 166°; N24–HÁÁÁO9, 3.074(15) Å, 146°] (Fig. 6).
[9] J. Müller, E. Zangrando, N. Pahlke, E. Freisinger, L. Randaccio, B. Lippert, Chem.
Eur. J. 4 (1998) 397.
ˇ
[10] (a) Lj. Glavaš-Obrovac, I. Karner, B. Zinic´, K. Pavelic´, Anticancer Res. 21 (2001)
1979;
ˇ
ˇ
(b) B. Zinic´, M. Zinic´, I. Krizmanic´, EP
0 877 022 B1, Synthesis of the
Sulfonylpyrimidine Derivatives with Anticancer Activity, 2003.;
(c) F. Supek, M. Kralj, M. Marjanovic´, L. Šuman, T. Šmuc, I. Krizmanic´, B. Zinic´,
Invest. New Drugs 26 (2008) 97.
ˇ
4. Conclusions
´
[11] J. Kašnar-Šamprec, Lj. Glavaš-Obrovac, M. Pavlak, I. Mihaljevic, V. Mrljak, N.
ˇ
Štambuk, P. Konjevoda, B. Zinic´, Croat. Chem. Acta 78 (2005) 261.
[12] L.J. Faruggia, J. Appl. Cryst. 32 (1999) 837.
[13] M.C. Burla, M. Camalli, B. Carrozzini, G.L. Cascarano, C. Giaccovazzo, G. Polidori,
Complexation of Pd(II) with 1-(p-toluenesulfonyl)cytosine li-
gand (1) leads initially to the formation of a kinetically favoured
mononuclear complex 2, regardless of the solvent used. This, ini-
tially formed complex undergoes rearrangements in aprotic polar
solvents, resulting in the formation of two different dinuclear
bridging species (3 from DMF and 4 from DMSO), where the ligand
anion (1-TosCÀ) exists in a rare iminooxo form and is coordinated
to Pd(II) through both its exocyclic (N4) and endocyclic nitrogen
atom (N3).
R. Spagna, SIR2002, Version 1.0,
A Program for Automatic Solution and
Refinement of Crystal Structures, University of Bari, Bari, Italy, 2002.
[14] G.M. Sheldrick, SHELX97: Program for the Refinement of Crystal Structures,
Universität Göttingen, Germany, 1997.
[15] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[16] P. van der Sluis, A.L. Spek, Acta Crystallogr., Sect. A 46 (1990) 194.
[17] A.L. Spek, PLATON
– A Multipurpose Crystallographic Tool, Version 40607,
University of Utrecht, Utrecht, The Netherlands, 1998–2007.
ˇ
ˇ
ˇ
´
´
ˇ
´
[18] A. Višnjevac, M. Zinic, M. Luic, D. Ziher, T. Kajfez Novak, B. Zinic, Tetrahedron
63 (2007) 86.
[19] J. Bernstein, R.E. Davies, L. Shimani, N.-L. Chang, Angew. Chem. 107 (1995)
1689.
Supplementary data
[20] J.H. Gross, Mass Spectrometry, Springer, Berlin, 2004.
ˇ
[21] L.C. Gatlin, F. Turecek, in: R.B. Cole (Ed.), Electrospray Ionization Mass
Spectrometry: Fundamentals, Instrumentation, and Applications, Wiley, New
York, 1997, p. 527.
CCDC 695234, 695235 and 695236 contains the supplementary
crystallographic data for compounds 1, 3 and 4, respectively. These
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
[22] M. Franska, Intern. J. Mass Spectrometry 261 (2007) 86.
[23] (a) M. Tsuboi, S. Takahasha, I. Harada, in: J. Duchesene (Ed.), Physicochemical
Properties of Nucleic Acids, vol. 2, Academic Press, London, 1973, p. 91;
(b) H. Susi, J.S. Ard, J.M. Purcell, Spectrochim. Acta 29A (1973) 725;
(c) E.D. Radchenko, G.G. Sheina, N.A. Smorygo, Y.P. Blagoi, J. Mol. Struct. 116
(1984) 387;
(d) Y. Nishimura, T. Tsuboi, Chem. Phys. 98 (1985) 71.
[24] E. Nir, I. Huenig, K. Kleinermanns, M.S. de Vries, Phys. Chem. Chem. Phys. 5
(2003) 4780.
Acknowledgments
ˇ
ˇ
[25] (a) L. Szucova, Z. Travnicek, M. Zatloukal, I. Popa, Bioorg. Med. Chem. 14
(2006) 479;
ˇ ´
We thank Dr. sc. Ljerka Tušek-Bozic for conductometric mea-
(b) I.A. Efimenko, A.P. Kurbakova, Transition Met. Chem. 19 (1994) 539;
(c) P.-C. Kong, F.D. Rochon, Can. J. Chem. 59 (1981) 3293.
surements. We appreciate the financial support of the Ministry of
Science, Education and Sports of the Republic of Croatia through