Heteroleptic Amidinate Complexes of Heavy Group 15 Elements
Table 3. Selected bond lengths [Å] and angles [°] of the calculated structures of [tBuC(NiPr)2]ECl2 (E = Sb 1, Bi 5).
E–N
E–Cl
C–N
Cl–E–Cl
N–E–N
1 (XRD)
2.1011(16)/
2.1906(17)
2.4030(6)/2.6435(6)/ 1.352(2)/
88.02(2)
60.69(6)
3.1171(7)/4.7343(7)
2.50/2.60
1.320(2)
1.34/1.39
1.34/1.38
1.36/1.37
1a (SDD) monomer 2.13/2.28
91
90
177
64
61
61
1b (SDD) trimer
2.13/2.23
2.16/2.18
2.52/2.74/3.41/4.56
2.76/2.76/3.16/3.21
1c (SDD) trimer[a]
5 (XRD)
2.236(5)/2.243(5)
2.7399(18)/
2.6868(18)/
3.1746(17)/
3.2102(19)
2.69
1.336(8)/1.337(8)
175.02(5)
58.43(18)
5a (SDD) monomer 2.24
5b (SDD) trimer 2.28/2.30
1.36/1.37
1.36/1.37
165
179
58
58
2.81/2.83/3.03/3.06
[a] Structure optimization using the structural parameter of the Bi complex (monomeric unit).
Konu, M. S. Balakrishna, T. Chivers, T. W. Swaddle, Inorg.
Chem. 2007, 46, 2627; g) F. Weller, J. Pebler, K. Dehnicke, K.
Hartke, H.-M. Wolff, Z. Anorg. Allg. Chem. 1982, 486, 61; h)
W. Honeise, W. Schwarz, G. Heckmann, A. Schmidt, Z. Anorg.
Allg. Chem. 1986, 533, 55.
Acknowledgments
S. S. thanks Deutsche Forschungsgemeinschaft (DFG) for financial
support.
[10] S. P. Green, C. Jones, G. Jin, A. Stasch, Inorg. Chem. 2007, 46,
8.
[11] M. Brym, C. M. Forsyth, C. Jones, P. C. Junk, R. P. Rose, A.
Stasch, D. A. Turner, Dalton Trans. 2007, 3282.
[1] L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev.
2002, 102, 3031.
[2] P. J. Bailey, S. Pace, Coord. Chem. Rev. 2001, 214, 91.
[3] a) J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219; b)
P. C. Junk, M. L. Cole, Chem. Commun. 2007, 1579. For a very
recent review on amidinate and guanidinate complexes see: c)
F. Edelmann, Adv. Organomet. Chem. 2008, 57, 183. The coor-
dination chemistry of neutral amidines and guanidines was re-
cently described; d) M. P. Coles, J. Chem. Soc., Dalton Trans.
2006, 985.
[12] a) L. A. Lesikar, A. F. Richards, J. Organomet. Chem. 2006,
691, 4250; b) L. W. Pineda, V. Jancik, S. Nembenna, H. W.
Roesky, Z. Anorg. Allg. Chem. 2007, 633, 2205. In addition,
complexes containing dianionic diamidonapthole substituents
have been prepared:; c) H. A. Spinney, I. Korobkov, G. A. Di-
Labio, G. P. A. Yap, D. S. Richeson, Organometallics 2007, 26,
4972; d) H. A. Spinney, I. Korobkov, D. S. Richeson, Chem.
Commun. 2007, 1647.
[4] See for further bindings modes: P. C. Junk, M. L. Cole, Chem.
Commun. 2007, 1579.
[13] P. B. Hitchcock, M. F. Lappert, G. Li, A. V. Protchenko, Chem.
Commun. 2009, 428.
[5] a) C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H.
Hao, F. Cimpoesu, Angew. Chem. Int. Ed. 2000, 39, 4274; b)
[14] W. Honeise, W. Schwarz, G. Heckmann, A. Schmidt, Z. Anorg.
Allg. Chem. 1986, 533, 55.
N. J. Hardman, B. E. Eichler, P. P. Power, Chem. Commun. [15] F. Weller, J. Pebler, K. Dehnicke, K. Hartke, H.-M. Wolff, Z.
2000, 1991; c) C. Jones, P. C. Junk, J. A. Platts, A. Stasch, J.
Am. Chem. Soc. 2006, 128, 2206; d) G. Jin, C. Jones, P. C. Junk,
A. Stasch, W. D. Woodul, New J. Chem. 2008, 32, 835.
Anorg. Allg. Chem. 1982, 486, 61.
[16] According to a structure search in the Cambridge Structural
Database, as described anions typically show bridging Sb–Cl
bond lengths ranging from 3.00–3.30 Å.
[6] S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754.
[7] See the following and references cited therein: a) M. Stender,
A. D. Phillips, P. P. Power, Inorg. Chem. 2001, 40, 5314; b) S. P.
Green, C. Jones, P. C. Junk, K.-A. Lippert, A. Stasch, Chem.
Commun. 2006, 3978; c) A. Stasch, C. M. Forsyth, C. Jones,
P. C. Junk, New J. Chem. 2008, 32, 829; d) S. Nagendran, S. S.
Sen, H. W. Roesky, D. Koley, H. Grubmüller, A. Pal, R.
Herbst-Irmer, Organometallics 2008, 27, 5459.
[8] a) S. Schulz, M. Nieger, Angew. Chem. 1999, 111, 1020; Angew.
Chem. Int. Ed. 1999, 38, 967; b) A. Kuczkowski, S. Schulz, M.
Nieger, Organometallics 2001, 20, 2000; c) A. Kuczkowski, S.
Schulz, M. Nieger, Angew. Chem. 2001, 113, 4351; Angew.
Chem. Int. Ed. 2001, 40, 4222.
[9] a) C. Ergezinger, F. Weller, K. Dehnicke, Z. Naturforsch. B
Chem. Sci. 1988, 43, 1119; b) U. Patt-Seibel, U. Müller, C. Erg-
ezinger, B. Borgsen, K. Dehnicke, D. Fenske, G. Baum, Z.
Anorg. Allg. Chem. 1990, 582, 30; c) P. J. Bailey, R. O. Gould,
C. N. Harmer, S. Pace, A. Steiner, D. S. Wright, Chem. Com-
mun. 1997, 1161; d) C. L. Raston, R. W. Skelton, V.-A. Tol-
hurst, A. H. White, Polyhedron 1998, 17, 935; e) C. L. Raston,
B. W. Skelton, V. A. Tolhurst, A. H. White, J. Chem. Soc., Dal-
ton Trans. 2000, 1279. Moreover, several boramidinate com-
plexes and complexes with the group 15 element in the formal
oxidation state +5 have been structurally characterized; f) J.
[17] a) C. L. Raston, B. W. Skelton, V.-A. Tolhurst, A. H. White, J.
Chem. Soc., Dalton Trans. 2000, 1279; b) C. L. Raston, B. W.
Skelton, V.-A. Tolhurst, A. H. White, Polyhedron 1998, 17, 935.
[18] DFT calculations were carried out with the Gaussian03 suite
of programs (M. J. Frisch, et al. Gaussian 03, Revision D.02;
Gaussian Inc., Pittsburgh, PA, 2003, complete reference is
given in the supplement). The molecular structures and ener-
gies of compounds 1a, 1b, 1c, 5a, and 5b were obtained by
performing a complete energy optimization of all geometric
parameters at the b3lyp/sdd level (input keywords “# b3lyp/
sdd opt pop = nboЈЈ), using the atomic coordinate of the crys-
tal structure determination of 1 and 5 (without solvent mole-
cule) as starting point. Population analysis was carried out with
the NBO module as implemented in Gaussian03. The final mo-
lecular structures and list of the final atomic coordinates and
energies, selected bond lengths, and NBO atomic populations
are given in the electronic supplement.
[19] SHELXS-97, Program for Structure Solution: G. M. Sheldrick,
Acta Crystallogr., Sect. A 1990, 46, 467.
[20] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure
Refinement, University of Göttingen, Germany, 1997.
Received: March 12, 2009
Published Online: April 21, 2009
Eur. J. Inorg. Chem. 2009, 2247–2253
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2253