of Hong Kong. This work is financially supported by the National Natural
Science Foundation of China (Grant No. 60118033), the National High
Technology Research and Development Program of China (863 Program)
(Grant No. 2008AA03A327), the National Basic Research Development
Program of China (973 Program) (Grant No. 2006CB933000), the Croucher
Foundation of Hong Kong, and RGC of Hong Kong (Grant No: CityU
101508). Supporting Information is available online from Wiley Inter-
Science or from the author.
the weaker luminance of the device based on p-PPtNN. This is
another possible reason for the lower efficiencies of the device
based on p-PPtNN compared to that of the device based on
p-PPtNT (Fig. 2a).
To summarize, two multiaryl-substituted pyridine derivatives,
namely p-PPtNT and p-PPtNN, have been synthesized and
applied as ETMs with good hole-blocking ability in high-
performance deep-blue OLEDs. The maximum current efficiency
Received: July 21, 2009
Published online: October 13, 2009
of the devices based on the new compounds is above 2.1 cd Aꢀ1
,
which is over 70% higher than for previously reported devices
using Alq3 and TPBI instead. The CIE coordinates of the
device based on p-PPtNT are close to the National Television
System Committee (NTSC) standards of 0.14, 0.08[29] for blue
emission.
[1] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
[2] C. Hosokawa, H. Higashi, N. Nakamura, T. Kusumoto, Appl. Phys. Lett.
1995, 67, 3853.
[3] T. Noda, H. Ogawa, N. Noma, Y. Shirota, Adv. Mater. 1997, 9, 720.
[4] K. Tamao, M. Uchida, T. Izumizawa, K. Fukukawa, S. Yamaguchi, J. Am.
Chem. Soc. 1998, 120, 9714.
Experimental
[5] C. H. Chen, J. Shi, Coord. Chem. Rev. 1998, 171, 161.
[6] V. A. Montes, R. Pohl, J. Shinar, P. Anzenbacher Jr. Chem. Eur. J. 2006, 12,
4523.
The chemical structures and synthetic routes towards p-PPtNT and
p-PPtNN are shown in Scheme 1. They were prepared using methods
similar to those described in the literature [15–17]. Taking p-PPtNN as an
example, 1,4-diacetylbene (1.62 g, 10 mmol) was first added to an alcohol
solution (50 mL) of p-methyl benzaldehyde (3.00 g, 25 mmol) under
stirring. A 10% NaOH solution (10 mL) was then dropped into the alcohol
solution under rapid stirring [15]. Stirring was continued for another 12 h.
The precipitate then was collected, washed with H2O, and recrystallized
from alcohol. Yellow acicular crystals (p-PPtNN I) (3.2 g, 80% yield) were
collected. The crystalline p-PPtNN I (1.83 g, 5 mmol), benzoylacetonitrile
(1.45 g, 10 mmol), and anhydrous ammonium acetate (1 g) were added
into a three-necked flask [17]. Glacial acetic acid (50 mL) was then injected
in under a nitrogen atmosphere. The mixture was refluxed for 24 h under
stirring. The whole process was completed under a nitrogen atmosphere.
After cooling to room temperature, the reaction mixture was filtered. A
pale yellow powder was recrystallized from 1,2-diclorobenzene. A white
solid of p-PPtNN was obtained. p-PPtNT were recrystallized with the same
solvent.
[7] H. H. Fong, W. C. H. Choy, K. N. Hui, Y. J. Liang, Appl. Phys. Lett. 2006, 88,
113 510.
[8] H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown,
C. Adachi, Chem. Mater. 2004, 16, 1285.
[9] L. S. Hung, C. H. Chen, Mater. Sci. Eng. R 2002, 39, 143.
[10] M. Nomura, Y. Shibasaki, M. Ueda, K. Tugita, M. Ichikawa, Y. Taniguchi,
Synth. Met. 2000, 122, 1832.
[11] Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, Y. Taga, J. Am.
Chem. Soc. 2003, 125, 7166.
[12] S. J. Su, T. Chiba, T. Takeda, J. Kido, Adv. Mater. 2008, 20, 2125.
[13] S. J. Su, D. TanaKa, Y. J. Li, H. Sasabe, T. Takeda, J. Kido, Org. Lett. 2008, 10,
941.
[14] H. Sasabe, E. Gonmori, T. Chiba, Y. Li, D. Tanaka, S. J. Su, T. Takeda, Y. Pu,
K. Nakayama, J. Kido, Chem. Mater. 2008, 20, 5951.
[15] A. Khatyr, H. Maas, G. Calzaferri, J. Org. Chem. 2002, 67, 6705.
[16] D. C. G. A. Pinto, A. M. S. Silva, J. A. S. Cavaleiro, J. Elguero, Eur. J. Org.
Chem. 2003, 747.
OLEDs were fabricated on patterned ITO-coated glass substrates with a
sheet resistance of 30 V/&. The substrates were cleaned with Decon 90,
rinsed in de-ionized water, dried in an oven, and finally exposed to
UV-ozone for about 25 min. The ITO substrates were then immediately
[17] a) S. Marchalin, J. Kuthan, Collection Czechoslovak Chem. Commun. 1985,
50, 1862. b) S. Marchalin, J. Kuthan, Collection Czechoslovak Chem. Com-
mun. 1985, 50, 1870. c) S. Marchalin, J. Kuthan, Collection Czechoslovak
Chem. Commun. 1985, 50, 1962.
transferred into
a deposition chamber with a base pressure of
1 ꢁ 10ꢀ6 mbar. Organic layers were sequentially deposited at a rate of
0.1ꢂ0.2 nm sꢀ1 by conventional vapor vacuum deposition. The MgAg alloy
was then prepared by co-evaporation of Mg and Ag at a volume ratio of 10:1
after LiF of 1 nm was deposited.
[18] H. Xin, F. Y. Li, M. Shi, Z. Q. Bian, C. H. Huang, J. Am. Chem. Soc. 2003,
125, 7166.
[19] S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn,
O. V. Salata, I. D. W. Samuel, Adv. Mater. 2002, 14, 975.
[20] Q. X. Tong, S. L. Lai, M. Y. Chan, Y. C. Zhou, H. L. Kwong, C. S. Lee,
S. T. Lee, Chem. Phys. Lett. 2008, 455, 71.
4,40-(1,4-Phenylene)bis(2-phenyl-6-p-tolylnicotinonitrile) (p-PPtNT): 1H
NMR (400 MHz, CDCl3, d): 8.14 (d, J ¼ 8.16 Hz, 4H), 8.08–8.05 (m,
4H), 7.90 (s, 2H), 7.88 (s, 4H), 7.58–7.56 (m, 6H), 7.35 (d, J ¼ 8.08 Hz,
4H), 2.44 (s, 6H); 13C NMR (400 MHz, CDCl3, d): 162.6, 159.6, 154.4,
141.3, 138.4, 138.2, 134.7, 130.3, 130.0, 129.6, 128.7, 127.7, 118.4, 118.0,
103.9, 21.6. HRMS (EI, m/z): [M]þ calcd. for C44H30N4: 614.25; found,
614.2466. Anal. calcd. for C44H30N4: C 85.97, H 4.92, N 9.11; found:
C 83.56, H 4.497, N 8.671.
6,60-(1,4-Phenylene)bis(2-phenyl-4-p-tolylnicotinonitrile) (p-PPtNN): 1H
NMR (400 MHz, CDCl3, d): 8.32 (s, 4H), 8.06–8.04 (m, 4H), 7.87
(s, 2H), 7.62 (d, J ¼ 8.08 Hz), 7.59–7.51 (m, 6H), 7.40 (d, J ¼ 7.88 Hz, 4H),
2.47 (s, 6H); HRMS (EI, m/z): [M]þ calcd. for C44H30N4: 614.25; found,
614.2466. Anal. calcd. for C44H30N4: C 85.97, H 4.92, N 9.11; found:
C 85.78, H 4.727, N 9.473.
[21] P. F. Wang, Z. Y. Xie, S. W. Tong, O. Y. Wong, C. S. Lee, N. B. Wong,
L. S. Hung, S. T. Lee, Chem. Mater. 2003, 15, 1913.
[22] J. Y. Li, D. Liu, Z. R. Hong, S. W. Tong, P. F. Wang, C. W. Ma, O. Lengyel,
C. S. Lee, H. L. Kwong, S. T. Lee, Chem. Mater. 2003, 15, 1486.
[23] Y. Q. Li, M. K. Fang, Z. Y. Xie, S. T. Lee, L. S. Hong, J. M. Shi, Adv. Mater.
2002, 14, 1317.
[24] C. H. Liao, M. T. Lee, C. H. Tsai, C. H. Chen, Appl. Phys. Lett. 2005, 86, 203 507.
[25] X. Y. Jiang, Z. L. Zhang, W. Q. Zhu, S. H. Xu, Displays 2006, 27, 161.
[26] J. M. Shi, C. Tang, Appl. Phys. Lett. 2002, 80, 3201.
[27] T. H. Liu, W. J. Shen, C. K. Yen, C. Y. Iou, H. H. Chen, B. Banumathy,
C. H. Chen, Synth. Met. 2003, 137, 1033.
[28] W. J. Shen, R. Dodda, C. C. Wu, F. I. Wu, T. H. Liu, H. H. Chen, C. H. Chen,
C. F. Shu, Chem. Mater. 2004, 16, 930.
Acknowledgements
[29] G. Rajeswaran, M. Itoh, M. Boroson, S. Barry, T. K. Hatwar, K. B. Kahen,
K. Yoneda, R. Yokoyama, T. Yamada, N. Komiya, H. Kanno, H. Takahashi,
SLD’00 Digest 2000, 40, 1.
The authors thank the Center of Super-Diamond and Advanced Film
(COSDAF), Department of Physics and Materials Science, City University
530
ß 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Mater. 2010, 22, 527–530